Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer

医学 多参数磁共振成像 前列腺癌 前列腺切除术 逻辑回归 随机森林 旁侵犯 无线电技术 支持向量机 接收机工作特性 磁共振成像 人工智能 放射科 机器学习 核医学 癌症 计算机科学 内科学
作者
Xuhui Fan,Ni Xie,Jingwen Chen,Tiewen Li,Rong Cao,Hongwei Yu,Meijuan He,Zilin Wang,Yihui Wang,Hao Liu,Han Wang,Xiaorui Yin
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:28
标识
DOI:10.3389/fonc.2022.839621
摘要

This study aims to develop and evaluate multiparametric MRI (MP-MRI)-based radiomic models as a noninvasive diagnostic method to predict several biological characteristics of prostate cancer.A total of 252 patients were retrospectively included who underwent radical prostatectomy and MP-MRI examinations. The prediction characteristics of this study were as follows: Ki67, S100, extracapsular extension (ECE), perineural invasion (PNI), and surgical margin (SM). Patients were divided into training cohorts and validation cohorts in the ratio of 4:1 for each group. After lesion segmentation manually, radiomic features were extracted from MP-MRI images and some clinical factors were also included. Max relevance min redundancy (mRMR) and recursive feature elimination (RFE) based on random forest (RF) were adopted to select features. Six classifiers were included (SVM, KNN, RF, decision tree, logistic regression, XGBOOST) to find the best diagnostic performance among them. The diagnostic efficiency of the construction models was evaluated by ROC curves and quantified by AUC.RF performed best among the six classifiers for the four groups according to AUC values (Ki67 = 0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). The performance of SVM was relatively the best for SM (AUC = 0.77). The number and importance of DCE features ranked first in the models of each group. The combined models of MP-MRI and clinical characteristics showed no significant difference compared with MP-MRI models according to Delong's tests.Radiomics models based on MP-MRI have the potential to predict biological characteristics and are expected to be a noninvasive method to evaluate the risk stratification of prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
之风百度完成签到 ,获得积分10
1秒前
艾琳克斯完成签到 ,获得积分10
2秒前
2秒前
yu发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
赘婿应助xuhan采纳,获得10
4秒前
叶问发布了新的文献求助10
4秒前
Owen应助张豪杰采纳,获得10
5秒前
6秒前
Akim应助爱笑的凡之采纳,获得10
7秒前
7秒前
7秒前
猪猪hero发布了新的文献求助10
8秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
猫沫沫829发布了新的文献求助10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
tramp应助科研通管家采纳,获得20
9秒前
tramp应助科研通管家采纳,获得20
9秒前
tramp应助科研通管家采纳,获得20
9秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
大个应助叶问采纳,获得30
9秒前
乐观小之应助科研通管家采纳,获得10
9秒前
liu应助科研通管家采纳,获得10
10秒前
tramp应助科研通管家采纳,获得20
10秒前
10秒前
10秒前
10秒前
洗碗净应助大魁采纳,获得10
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497551
关于积分的说明 11088037
捐赠科研通 3228178
什么是DOI,文献DOI怎么找? 1784700
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801230