医学
多参数磁共振成像
前列腺癌
前列腺切除术
逻辑回归
随机森林
旁侵犯
无线电技术
支持向量机
接收机工作特性
磁共振成像
人工智能
放射科
机器学习
核医学
癌症
计算机科学
内科学
作者
Xuhui Fan,Ni Xie,Jingwen Chen,Tiewen Li,Rong Cao,Hongwei Yu,Meijuan He,Zilin Wang,Yihui Wang,Hao Liu,Han Wang,Xiaorui Yin
标识
DOI:10.3389/fonc.2022.839621
摘要
This study aims to develop and evaluate multiparametric MRI (MP-MRI)-based radiomic models as a noninvasive diagnostic method to predict several biological characteristics of prostate cancer.A total of 252 patients were retrospectively included who underwent radical prostatectomy and MP-MRI examinations. The prediction characteristics of this study were as follows: Ki67, S100, extracapsular extension (ECE), perineural invasion (PNI), and surgical margin (SM). Patients were divided into training cohorts and validation cohorts in the ratio of 4:1 for each group. After lesion segmentation manually, radiomic features were extracted from MP-MRI images and some clinical factors were also included. Max relevance min redundancy (mRMR) and recursive feature elimination (RFE) based on random forest (RF) were adopted to select features. Six classifiers were included (SVM, KNN, RF, decision tree, logistic regression, XGBOOST) to find the best diagnostic performance among them. The diagnostic efficiency of the construction models was evaluated by ROC curves and quantified by AUC.RF performed best among the six classifiers for the four groups according to AUC values (Ki67 = 0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). The performance of SVM was relatively the best for SM (AUC = 0.77). The number and importance of DCE features ranked first in the models of each group. The combined models of MP-MRI and clinical characteristics showed no significant difference compared with MP-MRI models according to Delong's tests.Radiomics models based on MP-MRI have the potential to predict biological characteristics and are expected to be a noninvasive method to evaluate the risk stratification of prostate cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI