Multiparametric MRI and Machine Learning Based Radiomic Models for Preoperative Prediction of Multiple Biological Characteristics in Prostate Cancer

医学 多参数磁共振成像 前列腺癌 前列腺切除术 逻辑回归 随机森林 旁侵犯 无线电技术 支持向量机 接收机工作特性 磁共振成像 人工智能 放射科 机器学习 核医学 癌症 计算机科学 内科学
作者
Xuhui Fan,Ni Xie,Jingwen Chen,Tiewen Li,Rong Cao,Hongwei Yu,Meijuan He,Zilin Wang,Yihui Wang,Hao Liu,Han Wang,Xiaorui Yin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:28
标识
DOI:10.3389/fonc.2022.839621
摘要

This study aims to develop and evaluate multiparametric MRI (MP-MRI)-based radiomic models as a noninvasive diagnostic method to predict several biological characteristics of prostate cancer.A total of 252 patients were retrospectively included who underwent radical prostatectomy and MP-MRI examinations. The prediction characteristics of this study were as follows: Ki67, S100, extracapsular extension (ECE), perineural invasion (PNI), and surgical margin (SM). Patients were divided into training cohorts and validation cohorts in the ratio of 4:1 for each group. After lesion segmentation manually, radiomic features were extracted from MP-MRI images and some clinical factors were also included. Max relevance min redundancy (mRMR) and recursive feature elimination (RFE) based on random forest (RF) were adopted to select features. Six classifiers were included (SVM, KNN, RF, decision tree, logistic regression, XGBOOST) to find the best diagnostic performance among them. The diagnostic efficiency of the construction models was evaluated by ROC curves and quantified by AUC.RF performed best among the six classifiers for the four groups according to AUC values (Ki67 = 0.87, S100 = 0.80, ECE = 0.85, PNI = 0.82). The performance of SVM was relatively the best for SM (AUC = 0.77). The number and importance of DCE features ranked first in the models of each group. The combined models of MP-MRI and clinical characteristics showed no significant difference compared with MP-MRI models according to Delong's tests.Radiomics models based on MP-MRI have the potential to predict biological characteristics and are expected to be a noninvasive method to evaluate the risk stratification of prostate cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助SUN采纳,获得10
1秒前
1秒前
2秒前
Allen完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助MHK采纳,获得10
2秒前
537完成签到,获得积分10
4秒前
丙烯酸树脂完成签到,获得积分10
4秒前
劲秉应助天天看采纳,获得10
4秒前
6秒前
mit发布了新的文献求助10
7秒前
脑洞疼应助Alex采纳,获得10
7秒前
7秒前
ding应助ardejiang采纳,获得10
7秒前
敖哥完成签到,获得积分10
8秒前
星海完成签到,获得积分10
11秒前
minder完成签到,获得积分10
14秒前
15秒前
zzz完成签到 ,获得积分10
16秒前
淡淡芯完成签到 ,获得积分10
17秒前
ccc发布了新的文献求助10
19秒前
20秒前
hkahai发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
慕青应助nusiew采纳,获得10
23秒前
Alex发布了新的文献求助10
24秒前
24秒前
XinTin完成签到,获得积分10
25秒前
26秒前
IBMffff应助舒适的小馒头采纳,获得10
26秒前
Lucas应助hkahai采纳,获得10
26秒前
27秒前
sube完成签到,获得积分10
28秒前
ajin完成签到,获得积分10
29秒前
29秒前
在读小李发布了新的文献求助10
29秒前
30秒前
科研小趴菜完成签到,获得积分10
30秒前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3279173
求助须知:如何正确求助?哪些是违规求助? 2917496
关于积分的说明 8386321
捐赠科研通 2588340
什么是DOI,文献DOI怎么找? 1410057
科研通“疑难数据库(出版商)”最低求助积分说明 657588
邀请新用户注册赠送积分活动 638713