Optimal feature selection with CNN-feature learning for DDoS attack detection using meta-heuristic-based LSTM

服务拒绝攻击 计算机科学 卷积神经网络 人工智能 特征选择 深度学习 水准点(测量) 机器学习 特征(语言学) 网络安全 启发式 应用层DDoS攻击 入侵检测系统 过程(计算) 模式识别(心理学) 数据挖掘 计算机安全 互联网 大地测量学 万维网 哲学 操作系统 语言学 地理
作者
V. Raghava Swamy Dora,V. Naga Lakshmi
出处
期刊:International journal of intelligent robotics and applications [Springer Science+Business Media]
卷期号:6 (2): 323-349 被引量:3
标识
DOI:10.1007/s41315-022-00224-4
摘要

Nowadays, the digital era is reshaped by new technologies, and the cyber-attacks are more sophisticated and becoming as a commonplace. The distributed denial of service (DDoS) attacks are the exponentially-growing and major prevalent attack that targets the emerging and changing computational network infrastructures around the globe. It is complex to distinguish the DDoS attack traffic from the legitimate network traffic when the transit happens from the zombies or attacker to the victim. The DDoS attack is considered as a stubborn network security conflict. Yet, these algorithms need a priori knowledge regarding the classes, and it is not possible to adapt to the subsequent varying network traffic trends in an automatic manner. This creates the requirement for the enhancement of the novel DDoS detection mechanisms that in turn sophisticated and targets the DDoS attacks. The main intent of this paper is to implement the DDoS detection model through deep learning by the integration of convolutional neural network (CNN), and optimized long short-term memory (LSTM), so called CNN-O-LSTM. On the standard five benchmark datasets, the optimal feature selection is performed by the closest position-based grey wolf optimization (CP-GWO) with the consideration of minimizing the correlation among the features. With the optimally selected features, CNN is adopted for the feature learning process, from which the features of the second pooling layer are extracted, which is used for performing the detection. The adoption of optimally selected features with the CNN features enhances the detection performance with the most significant features. Finally, the optimized LSTM is used in the detection phase, which aims to maximize the detection accuracy by optimizing the hidden neurons of LSTM. The proposed DDoS detection scheme is experimented on a set of benchmark datasets, and the outcomes are compared over the traditional models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助chi采纳,获得50
1秒前
大模型应助乐乐乐宝采纳,获得10
2秒前
汀上白沙完成签到,获得积分10
3秒前
淡淡猕猴桃应助Lee采纳,获得50
5秒前
wangluting发布了新的文献求助10
5秒前
云鹏完成签到,获得积分10
5秒前
6秒前
8秒前
9秒前
白晨浩完成签到,获得积分10
9秒前
javaxixi完成签到,获得积分10
9秒前
登登发布了新的文献求助10
10秒前
10秒前
星辰大海应助welcomesha采纳,获得10
10秒前
科研通AI2S应助俏皮元容采纳,获得10
11秒前
玛卡巴卡完成签到,获得积分10
12秒前
黄huang发布了新的文献求助10
13秒前
13秒前
Ava应助一只盒子采纳,获得10
13秒前
15秒前
Jasper应助仁爱傲丝采纳,获得10
15秒前
wuwu发布了新的文献求助10
15秒前
双鱼座完成签到,获得积分10
15秒前
wangluting完成签到,获得积分10
15秒前
15秒前
16秒前
领导范儿应助无情的麦片采纳,获得10
16秒前
17秒前
18秒前
有魅力沛岚完成签到,获得积分10
18秒前
科目三应助倾落采纳,获得10
19秒前
沙瑞金完成签到,获得积分10
19秒前
20秒前
Alina_he发布了新的文献求助10
20秒前
mxy126354发布了新的文献求助10
22秒前
乐乐乐宝发布了新的文献求助10
23秒前
科研通AI5应助三幅画采纳,获得10
25秒前
小兰花发布了新的文献求助10
25秒前
完美世界应助自信河马采纳,获得10
25秒前
25秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712010
求助须知:如何正确求助?哪些是违规求助? 3260287
关于积分的说明 9913227
捐赠科研通 2973619
什么是DOI,文献DOI怎么找? 1630690
邀请新用户注册赠送积分活动 773543
科研通“疑难数据库(出版商)”最低求助积分说明 744295