算法
包络线(雷达)
断层(地质)
情态动词
波形
模式(计算机接口)
信号(编程语言)
集合(抽象数据类型)
时域
希尔伯特-黄变换
功能(生物学)
计算机科学
控制理论(社会学)
数学
人工智能
白噪声
统计
计算机视觉
进化生物学
控制(管理)
雷达
程序设计语言
高分子化学
化学
地震学
地质学
操作系统
电信
生物
作者
Junxiang Wang,Changshu Zhan,Sanping Li,Qiancheng Zhao,Jiuqing Liu,Zhijie Xie
出处
期刊:Measurement
[Elsevier]
日期:2022-01-29
卷期号:191: 110798-110798
被引量:44
标识
DOI:10.1016/j.measurement.2022.110798
摘要
Variational mode decomposition (VMD) is widely used in rotating machinery fault diagnosis. However, the choice of its main parameters is often based on experience, affecting the decomposition results. Aiming to mitigate this drawback, an adaptive VMD method using the Archimedes optimization algorithm (AOA) is presented. Firstly, the computational domain of the objective function is set to the amplitude spectrum of the signal envelope spectrum. Secondly, a correlation waveform index (Cwi) is proposed to evaluate the complexity of the signal. The minimum average value of the Cwi of all intrinsic modal functions (IMFs) is taken as the objective function. Finally, the AOA is used to search for the optimal mode number and penalty factor to find IMFs which are sensitive to fault features. Compared to the other improved VMD methods, the proposed method has a better performance in extracting the fault characteristics from the simulated and actual cases.
科研通智能强力驱动
Strongly Powered by AbleSci AI