作者
Bo Deng,Junyu Zhu,Guoqing Wang,Chao Xu,Xin Zhang,Panpan Wang,Qiaoxia Yuan
摘要
The cellulose content in vegetable waste (VW) is high and cannot be directly digested by black soldier fly larvae (BSFL). In this study, in order to treat VW using BSFL composting, kitchen waste (KW) is used as the only nutritional supplement for VW to analyze the effects of the different contents of crude protein (CP), crude fat (EE), carbohydrate (3C), compost thickness (CT), and treatment time on the larval weight (LW), survival rate (SR), dry matter reduction rate (DMR), bioconversion rate (BCR), physical and chemical properties of BSFL sand and changes in the microbial community. Our results showed that when the average 3C content increased by 40%, the average LW increased by 47.6%, and the SR, DMR, BCR, and organic matter (OM) content increased by 16.82%, 8.5%, 4.77%, and 3.86%, respectively. In contrast, when the average compost thickness increased by 5 cm, the average weight of BSFL decreased by 22.64%, while the SR of larvae, DMR, BCR, OM, and total nutrients (TN + P2O5 + K2O) decreased by 5%, 5.2%, 4.42%, 9.6%, and 0.78%, respectively. Germination test showed that BSFL sand alone could not be used as soilless culture substrate. After BSFL treatment, we found that the dominant phyla in BSFL sand were Firmicutes (95.77%), Proteobacteria (2.54%), Actinobacteria (0.74%), and Chloroflexi (0.6%). Our results indicate that BSFL composting is an effective method of treating VW, and 3C content and CT have a significant effect on BSFL composting.