D2-Net: Dual Disentanglement Network for Brain Tumor Segmentation With Missing Modalities

计算机科学 模式 人工智能 分割 图像分割 缺少数据 对偶(语法数字) 机器学习 计算机视觉 艺术 社会科学 文学类 社会学
作者
Qiushi Yang,Xiaoqing Guo,Zhen Chen,Peter Y. M. Woo,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2953-2964 被引量:55
标识
DOI:10.1109/tmi.2022.3175478
摘要

Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While missing modality data is common in clinical practice and it can result in the collapse of most previous methods relying on complete modality data. Current state-of-the-art approaches cope with the situations of missing modalities by fusing multi-modal images and features to learn shared representations of tumor regions, which often ignore explicitly capturing the correlations among modalities and tumor regions. Inspired by the fact that modality information plays distinct roles to segment different tumor regions, we aim to explicitly exploit the correlations among various modality-specific information and tumor-specific knowledge for segmentation. To this end, we propose a Dual Disentanglement Network (D2-Net) for brain tumor segmentation with missing modalities, which consists of a modality disentanglement stage (MD-Stage) and a tumor-region disentanglement stage (TD-Stage). In the MD-Stage, a spatial-frequency joint modality contrastive learning scheme is designed to directly decouple the modality-specific information from MRI data. To decompose tumor-specific representations and extract discriminative holistic features, we propose an affinity-guided dense tumor-region knowledge distillation mechanism in the TD-Stage through aligning the features of a disentangled binary teacher network with a holistic student network. By explicitly discovering relations among modalities and tumor regions, our model can learn sufficient information for segmentation even if some modalities are missing. Extensive experiments on the public BraTS-2018 database demonstrate the superiority of our framework over state-of-the-art methods in missing modalities situations. Codes are available at https://github.com/CityU-AIM-Group/D2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助tg2024采纳,获得10
刚刚
逸尘发布了新的文献求助10
2秒前
3秒前
缥缈的灵凡完成签到 ,获得积分10
4秒前
5秒前
领导范儿应助YZ采纳,获得10
5秒前
傻呼呼发布了新的文献求助10
6秒前
典雅问寒发布了新的文献求助10
8秒前
思源应助童童采纳,获得10
8秒前
9秒前
qt关注了科研通微信公众号
9秒前
luki完成签到,获得积分10
11秒前
Yuki发布了新的文献求助30
11秒前
吴晨曦完成签到 ,获得积分10
11秒前
逸尘完成签到,获得积分10
12秒前
pengyyang完成签到,获得积分10
13秒前
13秒前
yijiubingshi完成签到,获得积分10
13秒前
情怀应助大庆第一采纳,获得10
16秒前
cctv18应助完美芹采纳,获得30
16秒前
万能图书馆应助tg2024采纳,获得10
17秒前
冬共赴发布了新的文献求助10
17秒前
fd163c应助孤独晓灵采纳,获得10
18秒前
Jasper应助fly采纳,获得10
19秒前
饼子完成签到,获得积分10
20秒前
zhh完成签到,获得积分10
20秒前
20秒前
yyyyyao完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
小蘑菇应助拽根大恐龙采纳,获得10
23秒前
sunshine完成签到 ,获得积分10
23秒前
研友_Lap5d8完成签到,获得积分10
24秒前
24秒前
25秒前
科研通AI5应助蟹蟹采纳,获得10
25秒前
25秒前
qt发布了新的文献求助10
26秒前
豆子发布了新的文献求助20
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759125
求助须知:如何正确求助?哪些是违规求助? 3302180
关于积分的说明 10121269
捐赠科研通 3016580
什么是DOI,文献DOI怎么找? 1656512
邀请新用户注册赠送积分活动 790521
科研通“疑难数据库(出版商)”最低求助积分说明 753886