D2-Net: Dual Disentanglement Network for Brain Tumor Segmentation With Missing Modalities

计算机科学 模式 人工智能 分割 图像分割 缺少数据 对偶(语法数字) 机器学习 计算机视觉 艺术 社会科学 文学类 社会学
作者
Qiushi Yang,Xiaoqing Guo,Zhen Chen,Peter Y. M. Woo,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2953-2964 被引量:55
标识
DOI:10.1109/tmi.2022.3175478
摘要

Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While missing modality data is common in clinical practice and it can result in the collapse of most previous methods relying on complete modality data. Current state-of-the-art approaches cope with the situations of missing modalities by fusing multi-modal images and features to learn shared representations of tumor regions, which often ignore explicitly capturing the correlations among modalities and tumor regions. Inspired by the fact that modality information plays distinct roles to segment different tumor regions, we aim to explicitly exploit the correlations among various modality-specific information and tumor-specific knowledge for segmentation. To this end, we propose a Dual Disentanglement Network (D2-Net) for brain tumor segmentation with missing modalities, which consists of a modality disentanglement stage (MD-Stage) and a tumor-region disentanglement stage (TD-Stage). In the MD-Stage, a spatial-frequency joint modality contrastive learning scheme is designed to directly decouple the modality-specific information from MRI data. To decompose tumor-specific representations and extract discriminative holistic features, we propose an affinity-guided dense tumor-region knowledge distillation mechanism in the TD-Stage through aligning the features of a disentangled binary teacher network with a holistic student network. By explicitly discovering relations among modalities and tumor regions, our model can learn sufficient information for segmentation even if some modalities are missing. Extensive experiments on the public BraTS-2018 database demonstrate the superiority of our framework over state-of-the-art methods in missing modalities situations. Codes are available at https://github.com/CityU-AIM-Group/D2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助正直亦旋采纳,获得10
1秒前
科研通AI5应助jijahui采纳,获得80
2秒前
Jenny应助背后的诺言采纳,获得10
2秒前
木木完成签到,获得积分10
2秒前
赤邪发布了新的文献求助10
2秒前
2秒前
keen完成签到 ,获得积分10
2秒前
et完成签到,获得积分10
3秒前
桂魄完成签到,获得积分10
3秒前
3秒前
4秒前
wang发布了新的文献求助200
5秒前
5秒前
5秒前
英姑应助snowdrift采纳,获得10
5秒前
5秒前
5秒前
jy完成签到 ,获得积分10
5秒前
NexusExplorer应助立马毕业采纳,获得10
6秒前
在水一方应助123采纳,获得10
7秒前
科目三应助白华苍松采纳,获得10
8秒前
通~发布了新的文献求助10
8秒前
CipherSage应助千幻采纳,获得10
8秒前
8秒前
dddddd完成签到,获得积分10
8秒前
桂魄发布了新的文献求助10
8秒前
年轻的咖啡豆完成签到,获得积分20
9秒前
9秒前
绿洲发布了新的文献求助10
9秒前
9秒前
10秒前
aDou完成签到 ,获得积分10
10秒前
脑洞疼应助bc采纳,获得10
10秒前
NEMO发布了新的文献求助10
10秒前
李健应助mammoth采纳,获得20
10秒前
熊boy发布了新的文献求助10
10秒前
天真思雁发布了新的文献求助10
10秒前
11秒前
情怀应助蔡蔡不菜菜采纳,获得10
11秒前
shouyu29应助MADKAI采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762