D2-Net: Dual Disentanglement Network for Brain Tumor Segmentation With Missing Modalities

模态(人机交互) 计算机科学 模式 人工智能 分割 判别式 缺少数据 模式识别(心理学) 对偶(语法数字) 机器学习 艺术 社会科学 文学类 社会学
作者
Qiushi Yang,Xiaoqing Guo,Zhen Chen,Peter Y. M. Woo,Yixuan Yuan
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2953-2964 被引量:51
标识
DOI:10.1109/tmi.2022.3175478
摘要

Multi-modal Magnetic Resonance Imaging (MRI) can provide complementary information for automatic brain tumor segmentation, which is crucial for diagnosis and prognosis. While missing modality data is common in clinical practice and it can result in the collapse of most previous methods relying on complete modality data. Current state-of-the-art approaches cope with the situations of missing modalities by fusing multi-modal images and features to learn shared representations of tumor regions, which often ignore explicitly capturing the correlations among modalities and tumor regions. Inspired by the fact that modality information plays distinct roles to segment different tumor regions, we aim to explicitly exploit the correlations among various modality-specific information and tumor-specific knowledge for segmentation. To this end, we propose a Dual Disentanglement Network (D 2 -Net) for brain tumor segmentation with missing modalities, which consists of a modality disentanglement stage (MD-Stage) and a tumor-region disentanglement stage (TD-Stage). In the MD-Stage, a spatial-frequency joint modality contrastive learning scheme is designed to directly decouple the modality-specific information from MRI data. To decompose tumor-specific representations and extract discriminative holistic features, we propose an affinity-guided dense tumor-region knowledge distillation mechanism in the TD-Stage through aligning the features of a disentangled binary teacher network with a holistic student network. By explicitly discovering relations among modalities and tumor regions, our model can learn sufficient information for segmentation even if some modalities are missing. Extensive experiments on the public BraTS-2018 database demonstrate the superiority of our framework over state-of-the-art methods in missing modalities situations. Codes are available at https://github.com/CityU-AIM-Group/D2Net .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
范范范发布了新的文献求助10
1秒前
xxiao发布了新的文献求助10
3秒前
shenle完成签到,获得积分20
4秒前
4秒前
4秒前
Akim应助12采纳,获得10
5秒前
5秒前
5秒前
5秒前
霖昭完成签到,获得积分10
6秒前
依依发布了新的文献求助30
7秒前
Ava应助kb采纳,获得10
7秒前
ericzhangsir完成签到,获得积分10
8秒前
8秒前
LaLaC发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
背带裤打篮球应助liumuyi采纳,获得10
11秒前
Camellia应助小兔采纳,获得10
11秒前
zhong_huan发布了新的文献求助30
11秒前
时舒完成签到 ,获得积分10
12秒前
14秒前
李大山的山完成签到,获得积分10
14秒前
harden9159发布了新的文献求助10
16秒前
科研通AI2S应助务实的怜阳采纳,获得10
16秒前
斯文败类应助野性的曼香采纳,获得10
16秒前
研友_VZG7GZ应助昊昊采纳,获得10
17秒前
万能图书馆应助ziwei采纳,获得10
17秒前
LaLaC完成签到,获得积分10
17秒前
18秒前
委屈二发布了新的文献求助10
19秒前
机智雨寒发布了新的文献求助10
20秒前
任性的咖啡完成签到,获得积分20
21秒前
22秒前
24秒前
大模型应助一路向南采纳,获得10
24秒前
25秒前
依依完成签到,获得积分10
26秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229041
求助须知:如何正确求助?哪些是违规求助? 2876786
关于积分的说明 8196563
捐赠科研通 2544175
什么是DOI,文献DOI怎么找? 1374187
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621640