Compressing and reconstructing the voltage data for lithium-ion batteries using model migration and un-equidistant sampling techniques

电压 计算机科学 电池(电) 算法 启发式 电气工程 功率(物理) 工程类 物理 量子力学 人工智能
作者
Xiaopeng Tang,Furong Gao,Xin Lai
出处
期刊:eTransportation [Elsevier BV]
卷期号:13: 100186-100186 被引量:23
标识
DOI:10.1016/j.etran.2022.100186
摘要

The long-term storage of the batteries' operating data is critical to tracing and analysing their historical use but challenged by the Trillions of bytes of raw data generated per day. For battery pack applications such as electrified transportation, recording the single-cell voltage requires tens of times more space than other signals such as the pack current. Therefore, an efficient data compressor for the voltage is urgently required to save storage. We here propose to record the entire current trajectory but only partial voltage data in the data-compressing phase to save space. Understanding that the battery's load profiles are often non-stationary, determining an optimum voltage-recording strategy is critical to the reconstruction accuracy but, unfortunately, an NP-hard problem. In this case, a heuristic method is proposed to seek a near-optimum solution with reduced computation. In addition, a battery model is also identified in the compressing phase so that the voltage trajectory can be readily calculated from the recorded current when data reconstructing is required. To compensate for the potential mismatch of the identified model, we establish a migration network using the recorded (partial) data. A piece-wise linear corrector is further fused into the reconstruction algorithm to not only guarantee zero errors at the voltage-recording points but also simplify the design of the above-mentioned heuristic optimisation algorithm. Experimental results show that the root-mean-squared-error of the reconstructed data could be bounded by 5 mV when more than 95% of the voltage data are compressed, paving the way to more efficient storage of large-scale battery operating data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
中杯西瓜冰完成签到,获得积分10
1秒前
迷失沉寂发布了新的文献求助10
1秒前
zxt完成签到 ,获得积分10
1秒前
仿真小学生完成签到,获得积分10
2秒前
超级月光完成签到,获得积分10
2秒前
忆仙姿完成签到,获得积分10
2秒前
小星历险记完成签到 ,获得积分10
2秒前
丘比特应助hui_L采纳,获得10
2秒前
2秒前
天桂星发布了新的文献求助10
2秒前
2秒前
2秒前
Kingcrimson完成签到,获得积分10
3秒前
3秒前
锦墨人生发布了新的文献求助10
3秒前
YK完成签到,获得积分10
4秒前
liying完成签到,获得积分10
4秒前
5秒前
丫丫发布了新的文献求助30
5秒前
云淡风轻完成签到,获得积分10
5秒前
hute完成签到,获得积分10
5秒前
睡个好觉发布了新的文献求助10
5秒前
老黑完成签到,获得积分10
6秒前
ENSIL完成签到,获得积分10
6秒前
6秒前
fossil完成签到,获得积分10
6秒前
eleven完成签到,获得积分20
6秒前
6秒前
薛梦发布了新的文献求助10
6秒前
7秒前
7秒前
云淡风轻发布了新的文献求助10
7秒前
VV完成签到,获得积分10
8秒前
刻苦复天发布了新的文献求助10
8秒前
8秒前
小蘑菇应助锦墨人生采纳,获得10
9秒前
Trin发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614581
求助须知:如何正确求助?哪些是违规求助? 4018748
关于积分的说明 12439646
捐赠科研通 3701503
什么是DOI,文献DOI怎么找? 2041241
邀请新用户注册赠送积分活动 1073983
科研通“疑难数据库(出版商)”最低求助积分说明 957639