已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Compressing and reconstructing the voltage data for lithium-ion batteries using model migration and un-equidistant sampling techniques

电压 计算机科学 电池(电) 算法 启发式 电气工程 功率(物理) 工程类 量子力学 物理 人工智能
作者
Xiaopeng Tang,Furong Gao,Xin Lai
出处
期刊:eTransportation [Elsevier BV]
卷期号:13: 100186-100186 被引量:23
标识
DOI:10.1016/j.etran.2022.100186
摘要

The long-term storage of the batteries' operating data is critical to tracing and analysing their historical use but challenged by the Trillions of bytes of raw data generated per day. For battery pack applications such as electrified transportation, recording the single-cell voltage requires tens of times more space than other signals such as the pack current. Therefore, an efficient data compressor for the voltage is urgently required to save storage. We here propose to record the entire current trajectory but only partial voltage data in the data-compressing phase to save space. Understanding that the battery's load profiles are often non-stationary, determining an optimum voltage-recording strategy is critical to the reconstruction accuracy but, unfortunately, an NP-hard problem. In this case, a heuristic method is proposed to seek a near-optimum solution with reduced computation. In addition, a battery model is also identified in the compressing phase so that the voltage trajectory can be readily calculated from the recorded current when data reconstructing is required. To compensate for the potential mismatch of the identified model, we establish a migration network using the recorded (partial) data. A piece-wise linear corrector is further fused into the reconstruction algorithm to not only guarantee zero errors at the voltage-recording points but also simplify the design of the above-mentioned heuristic optimisation algorithm. Experimental results show that the root-mean-squared-error of the reconstructed data could be bounded by 5 mV when more than 95% of the voltage data are compressed, paving the way to more efficient storage of large-scale battery operating data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沃沃爹完成签到,获得积分10
1秒前
1秒前
烟花应助杨嘻嘻采纳,获得30
2秒前
rongrongrong完成签到,获得积分10
3秒前
Stars完成签到,获得积分10
3秒前
今天也读完成签到,获得积分10
5秒前
5秒前
汉堡发布了新的文献求助10
7秒前
9秒前
wop111发布了新的文献求助10
10秒前
李玄发布了新的文献求助10
10秒前
10秒前
科研通AI5应助豆兼米采纳,获得10
12秒前
QAQ完成签到 ,获得积分10
13秒前
大个应助语青采纳,获得10
13秒前
lele发布了新的文献求助10
15秒前
杨嘻嘻完成签到,获得积分20
15秒前
15秒前
左绾完成签到 ,获得积分10
16秒前
段段完成签到,获得积分10
17秒前
共享精神应助多情dingding采纳,获得10
18秒前
Norcae完成签到,获得积分10
19秒前
笨笨酒窝发布了新的文献求助10
19秒前
23秒前
共享精神应助可乐采纳,获得10
24秒前
24秒前
ccm应助甜甜的映寒采纳,获得10
24秒前
wanci应助小唐采纳,获得10
25秒前
聪聪完成签到,获得积分10
26秒前
hodor发布了新的文献求助10
27秒前
和谐鸭子发布了新的文献求助10
28秒前
30秒前
领导范儿应助研友_enP05n采纳,获得10
33秒前
35秒前
JamesPei应助okl采纳,获得10
36秒前
勤劳的身影完成签到,获得积分10
40秒前
fang发布了新的文献求助10
41秒前
Yongheng2012发布了新的文献求助10
42秒前
43秒前
今天也读发布了新的文献求助10
46秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5136187
求助须知:如何正确求助?哪些是违规求助? 4336542
关于积分的说明 13509763
捐赠科研通 4174345
什么是DOI,文献DOI怎么找? 2288827
邀请新用户注册赠送积分活动 1289602
关于科研通互助平台的介绍 1230834