清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-layer features ablation of BERT model and its application in stock trend prediction

计算机科学 滑动窗口协议 编码器 变压器 人工智能 库存(枪支) 语言模型 机器学习 窗口(计算) 万维网 机械工程 物理 量子力学 电压 工程类 操作系统
作者
Feng Zhao,Xinning Li,Yating Gao,Ying Li,Zhiquan Feng,Caiming Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:207: 117958-117958
标识
DOI:10.1016/j.eswa.2022.117958
摘要

Stock comments published by experts are important references for accurate stock trends prediction. How to comprehensively and accurately capture the topic of expert stock comments is an important issue which belongs to text classification . The Bidirectional Encoder Representations from Transformers (BERT) pretrained language model is widely used for text classification , due to its high identification accuracy. However, BERT has some limitations. First , it only utilizes fixed length text, leading to suboptimal performance in long text information exploration. Second , it only relies on the features extracted from the last layer, resulting in incomprehensive classification features. To tackle these issues, we propose a multi-layer features ablation study of BERT model for accurate identification of stock comments’ themes. Specifically, we firstly divide the original text to meet the length requirement of the BERT model based on sliding window technology. In this way, we can enlarge the sample size which is beneficial for reducing the over-fitting problem. At the same time, by dividing the long text into multiple short texts, all the information of the long text can be comprehensively captured through the synthesis of the subject information of multiple short texts. In addition , we extract the output features of each layer in the BERT model and apply the ablation strategy to extract more effective information in these features. Experimental results demonstrate that compared with non-intercepted comments, the topic recognition accuracy is improved by intercepting stock comments based on sliding window technology. It proves that intercepting text can improve the performance of text classification. Compared with the BERT, the multi-layer features ablation study we present in the paper further improves the performance in the topic recognition of stock comments, and can provide reference for the majority of investors. Our study has better performance and practicability on stock trend prediction by stock comments topic recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
29秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
彭于晏应助iwaljq采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
zhangxr发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
webmaster完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI2S应助有人采纳,获得10
3分钟前
高山流水完成签到,获得积分10
4分钟前
盛事不朽完成签到 ,获得积分10
5分钟前
5分钟前
星辰大海应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139600
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795340
捐赠科研通 2446944
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176