Functional MRI in major depressive disorder: A review of findings, limitations, and future prospects

重性抑郁障碍 医学 功能磁共振成像 默认模式网络 萧条(经济学) 神经科学 功能成像 扣带回前部 前额叶皮质 神经影像学 精神科 心理学 认知 经济 宏观经济学
作者
Jesper Pilmeyer,Willem Huijbers,Rolf Lamerichs,Jacobus F. A. Jansen,Marcel Breeuwer,Svitlana Zinger
出处
期刊:Journal of Neuroimaging [Wiley]
卷期号:32 (4): 582-595 被引量:12
标识
DOI:10.1111/jon.13011
摘要

Objective diagnosis and prognosis in major depressive disorder (MDD) remains a challenge due to the absence of biomarkers based on physiological parameters or medical tests. Numerous studies have been conducted to identify functional magnetic resonance imaging-based biomarkers of depression that either objectively differentiate patients with depression from healthy subjects, predict personalized treatment outcome, or characterize biological subtypes of depression. While there are some findings of consistent functional biomarkers, there is still lack of robust data acquisition and analysis methodology. According to current findings, primarily, the anterior cingulate cortex, prefrontal cortex, and default mode network play a crucial role in MDD. Yet, there are also less consistent results and the involvement of other regions or networks remains ambiguous. We further discuss image acquisition, processing, and analysis limitations that might underlie these inconsistencies. Finally, the current review aims to address and discuss possible remedies and future opportunities that could improve the search for consistent functional imaging biomarkers of depression. Novel acquisition techniques, such as multiband and multiecho imaging, and neural network-based cleaning approaches can enhance the signal quality in limbic and frontal regions. More comprehensive analyses, such as directed or dynamic functional features or the identification of biological depression subtypes, can improve objective diagnosis or treatment outcome prediction and mitigate the heterogeneity of MDD. Overall, these improvements in functional MRI imaging techniques, processing, and analysis could advance the search for biomarkers and ultimately aid patients with MDD and their treatment course.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实雁梅完成签到,获得积分10
刚刚
刚刚
刚刚
2秒前
zyyyyyy完成签到,获得积分10
2秒前
科研小笨猪完成签到,获得积分10
2秒前
昆仑发布了新的文献求助10
2秒前
3秒前
nihao2023发布了新的文献求助10
3秒前
李李完成签到,获得积分10
4秒前
innocent发布了新的文献求助10
4秒前
研友_VZG7GZ应助Tonald Yang采纳,获得10
5秒前
ylyao完成签到,获得积分10
5秒前
敬老院N号发布了新的文献求助20
6秒前
Jaylou完成签到,获得积分10
6秒前
手术刀完成签到 ,获得积分10
6秒前
阿斌斌斌完成签到 ,获得积分10
6秒前
djdh完成签到 ,获得积分10
7秒前
小皮皮完成签到,获得积分10
7秒前
7秒前
小菜鸟001发布了新的文献求助30
8秒前
LUMOS完成签到,获得积分10
8秒前
情怀应助CK采纳,获得10
8秒前
Orange应助可怜的游戏采纳,获得10
9秒前
昆仑完成签到,获得积分10
10秒前
梦在远方完成签到 ,获得积分10
10秒前
YOUYOU完成签到,获得积分10
12秒前
Nick完成签到,获得积分10
14秒前
14秒前
whisper完成签到 ,获得积分10
15秒前
15秒前
yyy完成签到 ,获得积分10
15秒前
马先生完成签到,获得积分10
16秒前
猴子完成签到,获得积分10
17秒前
19秒前
meimale完成签到,获得积分10
19秒前
西红柿不吃皮完成签到 ,获得积分10
19秒前
赘婿应助徐归尘采纳,获得10
20秒前
AIKaikai完成签到,获得积分10
21秒前
半颗糖完成签到,获得积分10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3742453
求助须知:如何正确求助?哪些是违规求助? 3284964
关于积分的说明 10042546
捐赠科研通 3001636
什么是DOI,文献DOI怎么找? 1647490
邀请新用户注册赠送积分活动 784234
科研通“疑难数据库(出版商)”最低求助积分说明 750676