计算机科学
移动边缘计算
计算卸载
马尔可夫决策过程
分布式计算
强化学习
资源配置
能源消耗
延迟(音频)
边缘计算
计算
服务器
资源管理(计算)
移动设备
移动计算
计算资源
GSM演进的增强数据速率
马尔可夫过程
计算复杂性理论
计算机网络
人工智能
算法
操作系统
电信
统计
数学
生态学
生物
作者
Guowen Wu,Yue Zhao,Yizhou Shen,Hong Zhang,Shigen Shen,Shui Yu
标识
DOI:10.1109/infocomwkshps54753.2022.9798323
摘要
Mobile edge computing (MEC) provides a new development direction for emerging computing-intensive applications because it can improve computing performance and lower the threshold for users to use such applications. However, designing an effective computation offloading strategy to determine which tasks should be uninstalled to an edge server is still a crucial challenge. To this end, we propose a computation offload scheme based on dynamic resource allocation to optimize computing performance and energy consumption in MEC systems. We further formulate the resource allocation as a partially observable Markov decision process, which is solved by a policy gradient deep reinforcement learning method. Compared with other existing solutions, simulation results show that our proposal reduces the computational latency and energy consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI