Risk identification of major infectious disease epidemics based on complex network theory

计算机科学 鉴定(生物学) 风险分析(工程) 算法 数据挖掘 医学 生物 植物
作者
Lingmei Fu,Qing Yang,Zheng Liu,Xingxing Liu,Zhan Wang
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:78: 103155-103155 被引量:7
标识
DOI:10.1016/j.ijdrr.2022.103155
摘要

Major infectious disease epidemic (MIDE) poses a great threat to human survival and development. It is critical to the MIDE prevention and control to figure out the risk influencing factors that may lead to MIDE outbreaks. MIDE risk identification is the starting point and the basis of risk management. This study conducts the risk identification of MIDE based on complex network theory. To this end, we create MIDE risk network and improve the classical Leaderrank algorithm with the idea of biased random wandering adopted. SLR1 algorithm and SLR2 algorithm are proposed. And SLR1 and SLR2 algorithms are compared with Leaderrank and Pagerank algorithms, based on which we select the best performing algorithm from SLR1 and SLR2 algorithms as the novel algorithm proposed in this study. And we use the best performing algorithm to complete the risk identification of MIDE. Results show that MIDE risk network has such properties as small-world and scale-free. Under targeted attacks the risk network exhibits high vulnerability. Both SLR1 and SLR2 outperform the other two algorithms, and SLR2 demonstrates the best performance. Therefore, SLR2 is used to rank the importance of risk factors. Fifteen key risk factors are identified which are related to the vulnerability of personnel, equipment, resources, environment and management, and the risk receptor exposure. The validity of SLR2 implementation in MIDE risk identification is verified from theoretical and practical perspective. This study facilitates MIDE risk reduction and thus improves MIDE risk management. What's more, the proposed SLR2 algorithm can be used for the risk identification of other disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
虚心柠檬完成签到 ,获得积分10
1秒前
liutg24完成签到,获得积分10
1秒前
1秒前
2秒前
思源应助温暖的沛凝采纳,获得10
3秒前
ding应助jianghs采纳,获得30
4秒前
XxxxxtPuCO完成签到,获得积分20
5秒前
5秒前
蒋婷发布了新的文献求助10
5秒前
拾年发布了新的文献求助10
6秒前
sun发布了新的文献求助10
7秒前
last炫神丶完成签到,获得积分10
7秒前
KinoFreeze完成签到 ,获得积分10
8秒前
huanghuahua发布了新的文献求助10
8秒前
9秒前
卿欣完成签到 ,获得积分10
10秒前
last炫神丶发布了新的文献求助10
10秒前
风枞完成签到 ,获得积分10
11秒前
白之玉发布了新的文献求助10
12秒前
小酒迟疑完成签到,获得积分10
14秒前
蒋婷完成签到,获得积分10
14秒前
14秒前
桐桐应助文静的猕猴桃采纳,获得10
15秒前
小马甲应助熊小子爱学习采纳,获得10
15秒前
17秒前
英姑应助shain采纳,获得10
18秒前
huanghuahua完成签到,获得积分10
20秒前
Jasper应助沉静初南采纳,获得10
21秒前
Jasper应助sun采纳,获得10
22秒前
23秒前
Tyranny完成签到 ,获得积分10
23秒前
Chocolate发布了新的文献求助10
23秒前
复杂的平卉完成签到,获得积分10
23秒前
24秒前
water应助老九采纳,获得30
24秒前
海绵宝宝完成签到 ,获得积分10
25秒前
熊小子爱学习完成签到,获得积分10
26秒前
Yx完成签到,获得积分10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993605
求助须知:如何正确求助?哪些是违规求助? 3534372
关于积分的说明 11265282
捐赠科研通 3274119
什么是DOI,文献DOI怎么找? 1806307
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712