Risk identification of major infectious disease epidemics based on complex network theory

计算机科学 鉴定(生物学) 风险分析(工程) 算法 数据挖掘 医学 植物 生物
作者
Lingmei Fu,Qing Yang,Zheng Liu,Xingxing Liu,Zhan Wang
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:78: 103155-103155 被引量:7
标识
DOI:10.1016/j.ijdrr.2022.103155
摘要

Major infectious disease epidemic (MIDE) poses a great threat to human survival and development. It is critical to the MIDE prevention and control to figure out the risk influencing factors that may lead to MIDE outbreaks. MIDE risk identification is the starting point and the basis of risk management. This study conducts the risk identification of MIDE based on complex network theory. To this end, we create MIDE risk network and improve the classical Leaderrank algorithm with the idea of biased random wandering adopted. SLR1 algorithm and SLR2 algorithm are proposed. And SLR1 and SLR2 algorithms are compared with Leaderrank and Pagerank algorithms, based on which we select the best performing algorithm from SLR1 and SLR2 algorithms as the novel algorithm proposed in this study. And we use the best performing algorithm to complete the risk identification of MIDE. Results show that MIDE risk network has such properties as small-world and scale-free. Under targeted attacks the risk network exhibits high vulnerability. Both SLR1 and SLR2 outperform the other two algorithms, and SLR2 demonstrates the best performance. Therefore, SLR2 is used to rank the importance of risk factors. Fifteen key risk factors are identified which are related to the vulnerability of personnel, equipment, resources, environment and management, and the risk receptor exposure. The validity of SLR2 implementation in MIDE risk identification is verified from theoretical and practical perspective. This study facilitates MIDE risk reduction and thus improves MIDE risk management. What's more, the proposed SLR2 algorithm can be used for the risk identification of other disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mklwxhlsd发布了新的文献求助10
刚刚
刚刚
Li关注了科研通微信公众号
1秒前
桐桐应助MIranda采纳,获得10
1秒前
ahah完成签到,获得积分10
2秒前
2秒前
2秒前
受伤白昼发布了新的文献求助10
3秒前
3秒前
1010完成签到,获得积分10
3秒前
这个名字就比原来的好听完成签到,获得积分10
3秒前
comeon完成签到,获得积分10
4秒前
yunyunya发布了新的文献求助10
4秒前
5秒前
WYW发布了新的文献求助10
5秒前
嘿嘿发布了新的文献求助10
5秒前
研友_VZG7GZ应助南小槿采纳,获得10
6秒前
额尔其子应助efine采纳,获得10
6秒前
李爱国应助彩色的德地采纳,获得10
6秒前
里里完成签到,获得积分10
6秒前
peng完成签到,获得积分10
6秒前
CQY完成签到 ,获得积分10
6秒前
7秒前
7秒前
共享精神应助渤海少年采纳,获得10
7秒前
vocrious完成签到,获得积分10
7秒前
科研通AI5应助呆萌的寄风采纳,获得10
7秒前
大个应助林雾采纳,获得10
8秒前
隔壁发布了新的文献求助10
8秒前
212774完成签到,获得积分10
8秒前
法号胡来完成签到,获得积分10
9秒前
李景奥完成签到,获得积分10
9秒前
杳杳完成签到 ,获得积分10
9秒前
sam完成签到,获得积分10
9秒前
田様应助稳重初蓝采纳,获得10
10秒前
文卿发布了新的文献求助20
11秒前
如意发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助50
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569