亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk identification of major infectious disease epidemics based on complex network theory

计算机科学 鉴定(生物学) 风险分析(工程) 算法 数据挖掘 医学 植物 生物
作者
Lingmei Fu,Qing Yang,Zheng Liu,Xingxing Liu,Zhan Wang
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:78: 103155-103155 被引量:7
标识
DOI:10.1016/j.ijdrr.2022.103155
摘要

Major infectious disease epidemic (MIDE) poses a great threat to human survival and development. It is critical to the MIDE prevention and control to figure out the risk influencing factors that may lead to MIDE outbreaks. MIDE risk identification is the starting point and the basis of risk management. This study conducts the risk identification of MIDE based on complex network theory. To this end, we create MIDE risk network and improve the classical Leaderrank algorithm with the idea of biased random wandering adopted. SLR1 algorithm and SLR2 algorithm are proposed. And SLR1 and SLR2 algorithms are compared with Leaderrank and Pagerank algorithms, based on which we select the best performing algorithm from SLR1 and SLR2 algorithms as the novel algorithm proposed in this study. And we use the best performing algorithm to complete the risk identification of MIDE. Results show that MIDE risk network has such properties as small-world and scale-free. Under targeted attacks the risk network exhibits high vulnerability. Both SLR1 and SLR2 outperform the other two algorithms, and SLR2 demonstrates the best performance. Therefore, SLR2 is used to rank the importance of risk factors. Fifteen key risk factors are identified which are related to the vulnerability of personnel, equipment, resources, environment and management, and the risk receptor exposure. The validity of SLR2 implementation in MIDE risk identification is verified from theoretical and practical perspective. This study facilitates MIDE risk reduction and thus improves MIDE risk management. What's more, the proposed SLR2 algorithm can be used for the risk identification of other disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢喜火车发布了新的文献求助10
3秒前
3秒前
精神稳定发布了新的文献求助10
6秒前
麻辣烫完成签到 ,获得积分10
6秒前
7秒前
高强发布了新的文献求助10
8秒前
wyx发布了新的文献求助200
8秒前
型男完成签到,获得积分10
9秒前
11秒前
11秒前
Moo5_zzZ完成签到,获得积分10
13秒前
科研通AI6应助顺利毕业呀采纳,获得20
14秒前
Moo5_zzZ发布了新的文献求助30
18秒前
呜呼啦呼完成签到 ,获得积分0
19秒前
19秒前
orixero应助ajinjin采纳,获得10
22秒前
MINICHI发布了新的文献求助10
22秒前
大模型应助言字午采纳,获得10
25秒前
龙卡烧烤店完成签到,获得积分10
26秒前
lily完成签到 ,获得积分10
33秒前
CipherSage应助精神稳定采纳,获得10
33秒前
科研通AI2S应助开心夜云采纳,获得10
34秒前
35秒前
顺利毕业呀完成签到,获得积分10
38秒前
怕黑钢笔完成签到 ,获得积分10
41秒前
华仔应助林钰浩采纳,获得10
42秒前
言字午完成签到,获得积分10
44秒前
酷波er应助遥感小虫采纳,获得10
48秒前
51秒前
子平完成签到 ,获得积分0
53秒前
林钰浩发布了新的文献求助10
57秒前
烟花应助liulin采纳,获得10
58秒前
58秒前
lkk完成签到,获得积分20
1分钟前
1分钟前
1分钟前
sissiarno完成签到,获得积分0
1分钟前
遥感小虫完成签到,获得积分10
1分钟前
tuanheqi发布了新的文献求助20
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356425
求助须知:如何正确求助?哪些是违规求助? 4488220
关于积分的说明 13971856
捐赠科研通 4389076
什么是DOI,文献DOI怎么找? 2411395
邀请新用户注册赠送积分活动 1403924
关于科研通互助平台的介绍 1377828