Risk identification of major infectious disease epidemics based on complex network theory

计算机科学 鉴定(生物学) 风险分析(工程) 算法 数据挖掘 医学 植物 生物
作者
Lingmei Fu,Qing Yang,Zheng Liu,Xingxing Liu,Zhan Wang
出处
期刊:International journal of disaster risk reduction [Elsevier]
卷期号:78: 103155-103155 被引量:7
标识
DOI:10.1016/j.ijdrr.2022.103155
摘要

Major infectious disease epidemic (MIDE) poses a great threat to human survival and development. It is critical to the MIDE prevention and control to figure out the risk influencing factors that may lead to MIDE outbreaks. MIDE risk identification is the starting point and the basis of risk management. This study conducts the risk identification of MIDE based on complex network theory. To this end, we create MIDE risk network and improve the classical Leaderrank algorithm with the idea of biased random wandering adopted. SLR1 algorithm and SLR2 algorithm are proposed. And SLR1 and SLR2 algorithms are compared with Leaderrank and Pagerank algorithms, based on which we select the best performing algorithm from SLR1 and SLR2 algorithms as the novel algorithm proposed in this study. And we use the best performing algorithm to complete the risk identification of MIDE. Results show that MIDE risk network has such properties as small-world and scale-free. Under targeted attacks the risk network exhibits high vulnerability. Both SLR1 and SLR2 outperform the other two algorithms, and SLR2 demonstrates the best performance. Therefore, SLR2 is used to rank the importance of risk factors. Fifteen key risk factors are identified which are related to the vulnerability of personnel, equipment, resources, environment and management, and the risk receptor exposure. The validity of SLR2 implementation in MIDE risk identification is verified from theoretical and practical perspective. This study facilitates MIDE risk reduction and thus improves MIDE risk management. What's more, the proposed SLR2 algorithm can be used for the risk identification of other disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
毛儿豆儿发布了新的文献求助10
3秒前
迷人的勒发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助123采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
ddddansu完成签到,获得积分10
5秒前
黄佳慧发布了新的文献求助10
6秒前
传奇3应助可可采纳,获得10
7秒前
ddddansu发布了新的文献求助10
11秒前
12秒前
12秒前
桐桐应助西厢张生采纳,获得10
13秒前
Alger完成签到,获得积分10
15秒前
15秒前
15秒前
crane完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
我是老大应助叶梦采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
xiaotong发布了新的文献求助20
17秒前
浮游应助HarrisonChan采纳,获得10
18秒前
19秒前
疏水无纺布完成签到 ,获得积分10
19秒前
19秒前
冷静伟诚发布了新的文献求助10
21秒前
啦啦啦发布了新的文献求助10
22秒前
22秒前
Luuuuuu发布了新的文献求助10
24秒前
萌神完成签到 ,获得积分10
24秒前
24秒前
25秒前
无花果应助闫栋采纳,获得10
26秒前
ganyu59发布了新的文献求助10
26秒前
伶俐凡白完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539424
关于积分的说明 14167973
捐赠科研通 4456912
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740