Risk identification of major infectious disease epidemics based on complex network theory

计算机科学 鉴定(生物学) 风险分析(工程) 算法 数据挖掘 医学 植物 生物
作者
Lingmei Fu,Qing Yang,Zheng Liu,Xingxing Liu,Zhan Wang
出处
期刊:International journal of disaster risk reduction [Elsevier BV]
卷期号:78: 103155-103155 被引量:7
标识
DOI:10.1016/j.ijdrr.2022.103155
摘要

Major infectious disease epidemic (MIDE) poses a great threat to human survival and development. It is critical to the MIDE prevention and control to figure out the risk influencing factors that may lead to MIDE outbreaks. MIDE risk identification is the starting point and the basis of risk management. This study conducts the risk identification of MIDE based on complex network theory. To this end, we create MIDE risk network and improve the classical Leaderrank algorithm with the idea of biased random wandering adopted. SLR1 algorithm and SLR2 algorithm are proposed. And SLR1 and SLR2 algorithms are compared with Leaderrank and Pagerank algorithms, based on which we select the best performing algorithm from SLR1 and SLR2 algorithms as the novel algorithm proposed in this study. And we use the best performing algorithm to complete the risk identification of MIDE. Results show that MIDE risk network has such properties as small-world and scale-free. Under targeted attacks the risk network exhibits high vulnerability. Both SLR1 and SLR2 outperform the other two algorithms, and SLR2 demonstrates the best performance. Therefore, SLR2 is used to rank the importance of risk factors. Fifteen key risk factors are identified which are related to the vulnerability of personnel, equipment, resources, environment and management, and the risk receptor exposure. The validity of SLR2 implementation in MIDE risk identification is verified from theoretical and practical perspective. This study facilitates MIDE risk reduction and thus improves MIDE risk management. What's more, the proposed SLR2 algorithm can be used for the risk identification of other disasters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanger完成签到,获得积分0
1秒前
2秒前
harrison完成签到,获得积分20
2秒前
狂野未来发布了新的文献求助10
3秒前
花露水完成签到,获得积分20
3秒前
3秒前
4秒前
小蘑菇应助咔咔采纳,获得10
6秒前
qzp发布了新的文献求助10
6秒前
leaolf应助称心曼安采纳,获得20
6秒前
顺心的巨人完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
项目多多完成签到,获得积分10
7秒前
7秒前
欢呼的冰蝶完成签到,获得积分10
7秒前
田様应助msy1998采纳,获得10
7秒前
8秒前
drdouxia发布了新的文献求助10
8秒前
老黄鱼完成签到,获得积分10
8秒前
宁人完成签到,获得积分10
8秒前
科研通AI5应助jyyg采纳,获得10
9秒前
蜒栩柚子完成签到 ,获得积分10
9秒前
明亮玉米完成签到,获得积分10
9秒前
我2023发布了新的文献求助10
9秒前
10秒前
harrison关注了科研通微信公众号
11秒前
harrison关注了科研通微信公众号
11秒前
fox完成签到 ,获得积分10
11秒前
李健应助梦玲采纳,获得10
12秒前
朱sq发布了新的文献求助10
12秒前
华仔应助宁人采纳,获得10
12秒前
桐桐应助可爱deyi采纳,获得10
13秒前
科研狗完成签到 ,获得积分10
13秒前
周周完成签到,获得积分10
13秒前
14秒前
Niko发布了新的文献求助30
14秒前
求助发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600474
求助须知:如何正确求助?哪些是违规求助? 4010608
关于积分的说明 12416866
捐赠科研通 3690360
什么是DOI,文献DOI怎么找? 2034326
邀请新用户注册赠送积分活动 1067728
科研通“疑难数据库(出版商)”最低求助积分说明 952513