清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hydrogen storage metal-organic framework classification models based on crystal graph convolutional neural networks

氢气储存 卷积神经网络 计算机科学 金属有机骨架 人工神经网络 图形 吸附 人工智能 算法 机器学习 化学 理论计算机科学 物理化学 有机化学
作者
Xiuyang Lü,Zhizhong Xie,Xuanjun Wu,Mengmeng Li,Weiquan Cai
出处
期刊:Chemical Engineering Science [Elsevier]
卷期号:259: 117813-117813 被引量:36
标识
DOI:10.1016/j.ces.2022.117813
摘要

Metal-organic frameworks (MOFs) have been considered as promising physical adsorbents for hydrogen storage due to their high porosity and structural tunability. We selected 7643 real MOFs from the computation-ready MOF 2019 database to screen high-performance materials for hydrogen storage based on the grand canonical Monte Carlo (GCMC) simulations. Based on the obtained data set, we proposed a deep learning classification model powered by the crystal graph convolutional neural networks (CGCNN) for the discovery of the optimal hydrogen storage MOFs. It is demonstrated that our classification model based on CGCNN algorithms exhibits a high prediction accuracy with the area under the ROC-plot curve (AUC) of 0.9208 for hydrogen storage performance of volumetric deliverable capacity (VDC). Compared with the classification models based on other machine learning algorithms such as random forest, our CGCNN model demonstrates the advantages of fast prediction with no feature extraction and little accuracy loss. When the trained CGCNN model was used to predict the classification of the unfamiliar samples (the randomly selected 1000 MOFs from the 137,953 hypothetical MOF database), we also obtain high accuracy with AUC > 0.81, indicating that this model exhibits reliable transferability for other types of MOFs. Meanwhile, we also elucidated the relationship between structure and performance of MOFs for hydrogen storage using the decision tree algorithms and quantitative structure–property analysis. Furthermore, the hydrogen adsorption performance and mechanism of top-performance MOFs were analyzed by adsorption isotherms, radial distribution functions, and mass center density distribution of equilibrium configurations. All those insights from atomic simulations and machine learnings can accelerate the discovery of new nanoporous materials not only for gas adsorption in MOFs but also for gas separation in other types of porous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
六一儿童节完成签到 ,获得积分10
刚刚
整齐妙芹发布了新的文献求助30
5秒前
星辰大海应助科研通管家采纳,获得10
6秒前
wangye完成签到 ,获得积分10
11秒前
20秒前
额123没名完成签到 ,获得积分10
21秒前
k sir完成签到,获得积分10
26秒前
程程发布了新的文献求助10
26秒前
chcmy完成签到 ,获得积分0
34秒前
一夜很静应助缥缈雍采纳,获得20
46秒前
gobi完成签到 ,获得积分10
47秒前
1250241652完成签到,获得积分10
56秒前
索谓完成签到 ,获得积分10
1分钟前
辰辰完成签到 ,获得积分10
1分钟前
DJ_Tokyo完成签到,获得积分10
1分钟前
整齐妙芹完成签到,获得积分20
1分钟前
寒战完成签到 ,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
1分钟前
研友_08oa3n完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
A,w携念e行ོ完成签到,获得积分10
2分钟前
刘峥峥完成签到,获得积分10
2分钟前
怕孤独的访云完成签到 ,获得积分10
2分钟前
2分钟前
CATH完成签到 ,获得积分10
2分钟前
yun_hong发布了新的文献求助10
2分钟前
古炮完成签到 ,获得积分10
2分钟前
雪山飞龙发布了新的文献求助10
2分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
3分钟前
haralee完成签到 ,获得积分10
3分钟前
小林太郎应助无奈夏菡采纳,获得30
3分钟前
qq完成签到 ,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131421
关于积分的说明 9391049
捐赠科研通 2831122
什么是DOI,文献DOI怎么找? 1556378
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715890