已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Machine Learning Algorithms to Predict the Outcomes of Mechanical Thrombectomy in Acute Ischemic Stroke Patients With an Extended Therapeutic Time Window

医学 改良兰金量表 接收机工作特性 机器学习 随机森林 算法 逻辑回归 冲程(发动机) 人工智能 曲线下面积 内科学 缺血性中风 缺血 计算机科学 机械工程 工程类
作者
Shanshan Lu,Jiulou Zhang,Rong-Rong Wu,Yuezhou Cao,Xiao‐Quan Xu,Ge Li,Sheng Liu,Hai‐Bin Shi,Feiyun Wu
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:46 (5): 775-780 被引量:5
标识
DOI:10.1097/rct.0000000000001341
摘要

Objective The aim of this study was to evaluate the performance of machine learning (ML) algorithms in predicting the functional outcome of mechanical thrombectomy (MT) outside the 6-hour therapeutic time window in patients with acute ischemic stroke (AIS). Methods One hundred seventy-seven consecutive AIS patients with large-vessel occlusion in the anterior circulation who underwent MT in the extended time window were enrolled. Clinical, neuroimaging, and treatment variables that could be obtained quickly in the real-world emergency settings were collected. Four machine learning algorithms (random forests, regularized logistic regression, support vector machine, and naive Bayes) were used to predict good outcomes (modified Rankin Scale scores of 0–2) at 90 days by using (1) only variables at admission and (2) both baseline and treatment variables. The performance of each model was evaluated using receiver operating characteristic (ROC) curve analysis. Feature importance was ranked using random forest algorithms. Results Eighty patients (45.2%) had a favorable 90-day outcome. Machine learning models including baseline clinical and neuroimaging characteristics predicted 90-day modified Rankin Scale with an area under the ROC curve of 0.80–0.81, sensitivity of 0.60–0.71 and specificity of 0.71–0.76. Further inclusion the treatment variables significantly improved the predictive performance (mean area under the ROC curve, 0.89–0.90; sensitivity, 0.77–0.85; specificity, 0.75–0.87). The most important characteristics for predicting 90-day outcomes were age, hypoperfusion intensity ratio at admission, and National Institutes of Health Stroke Scale score at 24 hours after MT. Conclusions Machine learning algorithms may facilitate prediction of 90-day functional outcomes in AIS patients with an extended therapeutic time window.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助zai采纳,获得10
2秒前
sl完成签到 ,获得积分10
5秒前
5秒前
7秒前
llnysl完成签到 ,获得积分10
8秒前
kuro发布了新的文献求助10
8秒前
10秒前
充电宝应助雪山飞鹰采纳,获得10
10秒前
杳鸢应助科研通管家采纳,获得10
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
杳鸢应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
zai发布了新的文献求助10
15秒前
科研通AI2S应助DDS采纳,获得10
20秒前
21秒前
善良的诗珊完成签到 ,获得积分10
21秒前
25秒前
CipherSage应助当当采纳,获得10
26秒前
番茄炒蛋完成签到 ,获得积分10
27秒前
27秒前
QUU完成签到 ,获得积分10
27秒前
fancy完成签到 ,获得积分10
27秒前
积极马里奥完成签到 ,获得积分10
29秒前
疯狂的易梦完成签到 ,获得积分10
29秒前
小黄人完成签到 ,获得积分10
30秒前
33秒前
菠萝头完成签到 ,获得积分10
34秒前
孤芳自赏IrisKing完成签到 ,获得积分10
37秒前
39秒前
冷艳的一区完成签到 ,获得积分10
39秒前
40秒前
科研通AI2S应助马马虎虎采纳,获得10
40秒前
shjyang完成签到,获得积分0
42秒前
当当发布了新的文献求助10
45秒前
火翟丰丰山心完成签到 ,获得积分10
46秒前
隔壁小黄完成签到 ,获得积分10
48秒前
鲁棒的砰砰砰完成签到,获得积分10
50秒前
Lychee完成签到 ,获得积分10
51秒前
51秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234449
求助须知:如何正确求助?哪些是违规求助? 2880760
关于积分的说明 8216976
捐赠科研通 2548347
什么是DOI,文献DOI怎么找? 1377713
科研通“疑难数据库(出版商)”最低求助积分说明 647944
邀请新用户注册赠送积分活动 623304