已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D building reconstruction from single street view images using deep learning

足迹 地理空间分析 点云 计算机科学 三维重建 人工智能 移动地图 计算机视觉 地图学 地理 数据科学 数据挖掘 机器学习 考古
作者
HweeHwa Pang,Filip Biljecki
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102859-102859 被引量:46
标识
DOI:10.1016/j.jag.2022.102859
摘要

3D building models are an established instance of geospatial information in the built environment, but their acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in practice, often only few street-level images provide an unobstructed view of a building. We develop the reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; (2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D urban form from SVI without requiring any existing building information. Obtaining 3D building models in regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小耿完成签到 ,获得积分10
1秒前
struggling2026完成签到 ,获得积分10
3秒前
amber完成签到 ,获得积分10
4秒前
w王王完成签到 ,获得积分10
5秒前
8秒前
叩桥不渡完成签到,获得积分10
8秒前
8秒前
yanzu完成签到,获得积分10
9秒前
周晴完成签到 ,获得积分10
11秒前
yanzu发布了新的文献求助20
13秒前
斯文金鑫发布了新的文献求助10
14秒前
吴妙竹hh完成签到 ,获得积分10
14秒前
yang完成签到 ,获得积分10
14秒前
洛神完成签到 ,获得积分10
17秒前
黑巧的融化完成签到 ,获得积分10
18秒前
乐乐乐乐乐乐应助lyyyy采纳,获得30
19秒前
DW完成签到,获得积分10
22秒前
xyyyy完成签到 ,获得积分10
24秒前
24秒前
Pauline完成签到 ,获得积分10
24秒前
yzthk完成签到 ,获得积分10
25秒前
xiangwang完成签到 ,获得积分10
26秒前
李健应助东方天奇采纳,获得10
26秒前
26秒前
lyyyy完成签到,获得积分10
27秒前
研友_ZG4ml8完成签到 ,获得积分10
27秒前
537完成签到,获得积分10
27秒前
完美世界应助农大彭于晏采纳,获得10
28秒前
30秒前
吕lvlvlvlvlv完成签到 ,获得积分10
31秒前
骆十八完成签到,获得积分10
32秒前
边曦完成签到 ,获得积分10
32秒前
gulugulu发布了新的文献求助10
32秒前
超级小熊猫完成签到 ,获得积分10
33秒前
流沙无言完成签到 ,获得积分10
34秒前
老金金发布了新的文献求助10
35秒前
1485155145完成签到,获得积分20
36秒前
六六完成签到 ,获得积分10
36秒前
39秒前
gulugulu完成签到,获得积分10
40秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344039
求助须知:如何正确求助?哪些是违规求助? 2971087
关于积分的说明 8646389
捐赠科研通 2651223
什么是DOI,文献DOI怎么找? 1451691
科研通“疑难数据库(出版商)”最低求助积分说明 672237
邀请新用户注册赠送积分活动 661776