3D building reconstruction from single street view images using deep learning

足迹 地理空间分析 点云 计算机科学 三维重建 人工智能 移动地图 计算机视觉 地图学 地理 数据科学 数据挖掘 机器学习 考古
作者
HweeHwa Pang,Filip Biljecki
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:112: 102859-102859 被引量:46
标识
DOI:10.1016/j.jag.2022.102859
摘要

3D building models are an established instance of geospatial information in the built environment, but their acquisition remains complex and topical. Approaches to reconstruct 3D building models often require existing building information (e.g. their footprints) and data such as point clouds, which are scarce and laborious to acquire, limiting their expansion. In parallel, street view imagery (SVI) has been gaining currency, driven by the rapid expansion in coverage and advances in computer vision (CV), but it has not been used much for generating 3D city models. Traditional approaches that can use SVI for reconstruction require multiple images, while in practice, often only few street-level images provide an unobstructed view of a building. We develop the reconstruction of 3D building models from a single street view image using image-to-mesh reconstruction techniques modified from the CV domain. We regard three scenarios: (1) standalone single-view reconstruction; (2) reconstruction aided by a top view delineating the footprint; and (3) refinement of existing 3D models, i.e. we examine the use of SVI to enhance the level of detail of block (LoD1) models, which are common. The results suggest that trained models supporting (2) and (3) are able to reconstruct the overall geometry of a building, while the first scenario may derive the approximate mass of the building, useful to infer the urban form of cities. We evaluate the results by demonstrating their usefulness for volume estimation, with mean errors of less than 10% for the last two scenarios. As SVI is now available in most countries worldwide, including many regions that do not have existing footprint and/or 3D building data, our method can derive rapidly and cost-effectively the 3D urban form from SVI without requiring any existing building information. Obtaining 3D building models in regions that hitherto did not have any, may enable a number of 3D geospatial analyses locally for the first time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斜杠小猪发布了新的文献求助10
1秒前
1秒前
CodeCraft应助长情青烟采纳,获得10
1秒前
3秒前
洛城完成签到,获得积分10
4秒前
好好好完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
榛糕李发布了新的文献求助10
6秒前
英姑应助鸡腿子采纳,获得10
6秒前
小灰灰发布了新的文献求助10
8秒前
8秒前
8秒前
眼睛大安荷完成签到,获得积分10
9秒前
9秒前
乐乐应助anyelengxin采纳,获得10
9秒前
10秒前
11秒前
领导范儿应助小张采纳,获得10
11秒前
12秒前
12秒前
拼搏山槐发布了新的文献求助10
13秒前
QYPANG发布了新的文献求助10
13秒前
13秒前
Suzanne完成签到,获得积分10
13秒前
CR7应助犬狗狗采纳,获得20
13秒前
卡莎发布了新的文献求助10
13秒前
14秒前
乐乐应助成就的雪莲采纳,获得10
14秒前
榛糕李完成签到,获得积分10
14秒前
CodeCraft应助clocksoar采纳,获得10
14秒前
14秒前
Owen应助科研小白发发发采纳,获得10
15秒前
Curry发布了新的文献求助10
16秒前
Brian发布了新的文献求助10
17秒前
17秒前
18秒前
Rondab应助唐唐采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958929
求助须知:如何正确求助?哪些是违规求助? 3505199
关于积分的说明 11122925
捐赠科研通 3236708
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871444
科研通“疑难数据库(出版商)”最低求助积分说明 802794