Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia

医学 中枢神经系统 仿形(计算机编程) 内科学 脑脊液 代谢组学 病理 生物信息学 生物 计算机科学 操作系统
作者
Zhiqiang Song,Gusheng Tang,Chunlin Zhuang,Yang Wang,Mian Wang,Diya Lv,Guihua Lu,Jie Meng,Min Xia,Zhenyu Zhu,Yifeng Chai,Jianmin Yang,Yue Liu
出处
期刊:British Journal of Haematology [Wiley]
卷期号:198 (6): 994-1010 被引量:7
标识
DOI:10.1111/bjh.18307
摘要

Summary The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty‐three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8‐hydroxyguanosine, l ‐phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LkD29n完成签到 ,获得积分10
刚刚
皮皮发布了新的文献求助30
刚刚
乍见发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
啦啦啦发布了新的文献求助10
6秒前
一只虎子完成签到,获得积分10
6秒前
深情安青应助大胆的盼山采纳,获得10
6秒前
云_123发布了新的文献求助10
7秒前
bkagyin应助DianaRang采纳,获得30
8秒前
9秒前
一二发布了新的文献求助10
9秒前
9秒前
李健应助zls采纳,获得10
10秒前
SHENG完成签到,获得积分10
10秒前
10秒前
无奈安筠完成签到 ,获得积分10
11秒前
13秒前
务实小鸽子完成签到 ,获得积分10
14秒前
robi发布了新的文献求助10
14秒前
Felix发布了新的文献求助10
15秒前
sys完成签到,获得积分10
15秒前
123发布了新的文献求助10
15秒前
yaoyao完成签到 ,获得积分10
15秒前
研友_850EYZ发布了新的文献求助10
16秒前
贰鸟应助joanna0932采纳,获得20
16秒前
17秒前
17秒前
赘婿应助一二采纳,获得10
19秒前
wu完成签到,获得积分10
19秒前
NexusExplorer应助王爱灿采纳,获得10
19秒前
20秒前
20秒前
You关注了科研通微信公众号
24秒前
研究啥完成签到,获得积分10
26秒前
FashionBoy应助犹豫弘文采纳,获得10
26秒前
乍见完成签到,获得积分10
29秒前
Hello应助DianaRang采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825