Metabolomic profiling of cerebrospinal fluid reveals an early diagnostic model for central nervous system involvement in acute lymphoblastic leukaemia

医学 内科学 脑脊液 代谢组学 肿瘤科 生物信息学 生物
作者
Zhiqiang Song,Gusheng Tang,Chunlin Zhuang,Yang Wang,Mian Wang,Diya Lv,Guihua Lu,Jie Meng,Min Xia,Zhenyu Zhu,Yifeng Chai,Jianmin Yang,Yue Liu
出处
期刊:British Journal of Haematology [Wiley]
卷期号:198 (6): 994-1010 被引量:8
标识
DOI:10.1111/bjh.18307
摘要

Summary The pathogenesis of central nervous system involvement (CNSI) in patients with acute lymphoblastic leukaemia (ALL) remains unclear and a robust biomarker of early diagnosis is missing. An untargeted cerebrospinal fluid (CSF) metabolomics analysis was performed to identify independent risk biomarkers that could diagnose CNSI at the early stage. Thirty‐three significantly altered metabolites between ALL patients with and without CNSI were identified, and a CNSI evaluation score (CES) was constructed to predict the risk of CNSI based on three independent risk factors (8‐hydroxyguanosine, l ‐phenylalanine and hypoxanthine). This predictive model could diagnose CNSI with positive prediction values of 95.9% and 85.6% in the training and validation sets respectively. Moreover, CES score increased with the elevated level of central nervous system (CNSI) involvement. In addition, we validated this model by tracking the changes in CES at different stages of CNSI, including before CNSI and during CNSI, and in remission after CNSI. The CES showed good ability to predict the progress of CNSI. Finally, we constructed a nomogram to predict the risk of CNSI in clinical practice, which performed well compared with observed probability. This unique CSF metabolomics study may help us understand the pathogenesis of CNSI, diagnose CNSI at the early stage, and sequentially achieve personalized precision treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼柒完成签到,获得积分10
刚刚
珊明治完成签到,获得积分10
刚刚
mmol发布了新的文献求助10
1秒前
1秒前
露露发布了新的文献求助10
1秒前
1秒前
向向完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Wangjingxuan完成签到,获得积分10
2秒前
kuyng发布了新的文献求助10
2秒前
清爽的新瑶完成签到,获得积分10
2秒前
磨磨完成签到,获得积分10
3秒前
科研通AI6应助碧蓝之柔采纳,获得10
3秒前
3秒前
慕青应助我是狗采纳,获得10
3秒前
4秒前
研友_QLXagn发布了新的文献求助10
4秒前
4秒前
4秒前
隐形的谷槐完成签到 ,获得积分10
5秒前
5秒前
DreamSeker8发布了新的文献求助10
6秒前
奋斗发布了新的文献求助10
6秒前
6秒前
天真百招发布了新的文献求助10
7秒前
夕荀发布了新的文献求助10
7秒前
李小新完成签到 ,获得积分10
7秒前
言诚开发布了新的文献求助10
8秒前
8秒前
姬因发布了新的文献求助10
8秒前
8秒前
FashionBoy应助大炮轰地球采纳,获得10
8秒前
兴奋莞发布了新的文献求助10
9秒前
10秒前
10秒前
wanci应助典雅猕猴桃采纳,获得10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608584
求助须知:如何正确求助?哪些是违规求助? 4693308
关于积分的说明 14877618
捐赠科研通 4718061
什么是DOI,文献DOI怎么找? 2544332
邀请新用户注册赠送积分活动 1509463
关于科研通互助平台的介绍 1472844