计算机科学
模式
多样性(控制论)
数据科学
人工智能
梅德林
精密医学
系统回顾
大数据
医学
机器学习
数据挖掘
病理
法学
社会学
政治学
社会科学
作者
Yaël Bensoussan,Erik B. Vanstrum,Michael M. Johns,Anaïs Rameau
标识
DOI:10.1177/01945998221110839
摘要
This state of the art review aims to examine contemporary advances in applications of artificial intelligence (AI) to the screening, detection, management, and prognostication of laryngeal cancer (LC).Four bibliographic databases were searched: PubMed, EMBASE, Cochrane, and IEEE.A structured review of the current literature (up to January 2022) was performed. Search terms related to topics of AI in LC were identified and queried by 2 independent reviewers. Citations of selected studies and review articles were also evaluated to ensure comprehensiveness.AI applications in LC have encompassed a variety of data modalities, including radiomics, genomics, acoustics, clinical data, and videomics, to support screening, diagnosis, therapeutic decision making, and prognosis. However, most studies remain at the proof-of-concept level, as AI algorithms are trained on single-institution databases with limited data sets and a single data modality.AI algorithms in LC will need to be trained on large multi-institutional data sets and integrate multimodal data for optimal performance and clinical utility from screening to prognosis. Out of the data types reviewed, genomics has the most potential to provide generalizable models thanks to available large multi-institutional open access genomic data sets. Voice acoustic data represent an inexpensive and accurate biomarker, which is easy and noninvasive to capture, offering a unique opportunity for screening and monitoring of LA, especially in low-resource settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI