Artificial Intelligence and Laryngeal Cancer: From Screening to Prognosis: A State of the Art Review

计算机科学 模式 多样性(控制论) 数据科学 人工智能 梅德林 精密医学 系统回顾 大数据 医学 机器学习 数据挖掘 病理 法学 社会学 政治学 社会科学
作者
Yaël Bensoussan,Erik B. Vanstrum,Michael M. Johns,Anaïs Rameau
出处
期刊:Otolaryngology-Head and Neck Surgery [SAGE]
卷期号:168 (3): 319-329 被引量:17
标识
DOI:10.1177/01945998221110839
摘要

This state of the art review aims to examine contemporary advances in applications of artificial intelligence (AI) to the screening, detection, management, and prognostication of laryngeal cancer (LC).Four bibliographic databases were searched: PubMed, EMBASE, Cochrane, and IEEE.A structured review of the current literature (up to January 2022) was performed. Search terms related to topics of AI in LC were identified and queried by 2 independent reviewers. Citations of selected studies and review articles were also evaluated to ensure comprehensiveness.AI applications in LC have encompassed a variety of data modalities, including radiomics, genomics, acoustics, clinical data, and videomics, to support screening, diagnosis, therapeutic decision making, and prognosis. However, most studies remain at the proof-of-concept level, as AI algorithms are trained on single-institution databases with limited data sets and a single data modality.AI algorithms in LC will need to be trained on large multi-institutional data sets and integrate multimodal data for optimal performance and clinical utility from screening to prognosis. Out of the data types reviewed, genomics has the most potential to provide generalizable models thanks to available large multi-institutional open access genomic data sets. Voice acoustic data represent an inexpensive and accurate biomarker, which is easy and noninvasive to capture, offering a unique opportunity for screening and monitoring of LA, especially in low-resource settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼呼完成签到,获得积分10
刚刚
默特朗完成签到,获得积分20
1秒前
Duolalala完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
5wei完成签到,获得积分10
3秒前
玉山小霸王完成签到 ,获得积分10
4秒前
5秒前
帅气的萝莉完成签到,获得积分10
6秒前
Mengyue应助xzy998采纳,获得10
6秒前
harden9159完成签到,获得积分10
7秒前
清脆的棒球完成签到 ,获得积分10
8秒前
8秒前
IBMffff完成签到,获得积分0
9秒前
RR发布了新的文献求助10
9秒前
行萱完成签到 ,获得积分10
10秒前
楠楠关注了科研通微信公众号
12秒前
13秒前
共享精神应助errui采纳,获得10
14秒前
宋文娟发布了新的文献求助10
14秒前
马上飞上宇宙应助orchid采纳,获得10
14秒前
15秒前
amber发布了新的文献求助10
15秒前
16秒前
爱吃香菜完成签到,获得积分10
18秒前
拼搏的惜天应助陆碌路采纳,获得10
18秒前
懒大王发布了新的文献求助10
19秒前
将将发布了新的文献求助10
20秒前
20秒前
Ava应助EtAior采纳,获得10
20秒前
ix1发布了新的文献求助10
20秒前
maaicui完成签到,获得积分10
20秒前
23秒前
peter完成签到,获得积分10
23秒前
酷波er应助ZRDJ采纳,获得10
25秒前
Mengyue应助xzy998采纳,获得10
25秒前
26秒前
errui发布了新的文献求助10
27秒前
盛宇大天才完成签到,获得积分10
27秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269785
求助须知:如何正确求助?哪些是违规求助? 2909416
关于积分的说明 8348985
捐赠科研通 2579731
什么是DOI,文献DOI怎么找? 1403013
科研通“疑难数据库(出版商)”最低求助积分说明 655595
邀请新用户注册赠送积分活动 634869