Ship detection of coast defense radar in real marine environment based on fast YOLO V4

计算机科学 合成孔径雷达 卷积神经网络 雷达 目标检测 人工智能 遥感 探测器 帧速率 干扰(通信) 特征(语言学) 实时计算 计算机视觉 模式识别(心理学) 频道(广播) 地质学 电信 哲学 语言学
作者
Yan He,Chao Chen,Xiaohang Sun,Yibing Li,Zhe Geng,Jindong Zhang,Daiyin Zhu
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:16 (02) 被引量:3
标识
DOI:10.1117/1.jrs.16.024511
摘要

We propose an innovative method for ship detection in the real marine environment. Different from other high-resolution optical images and synthetic aperture radar images, ship detection of coast defense radar is quite challenging due to the complex background, sea state, and low resolution. To this end, we build a real dataset and propose an innovative detection method based on you only look once (YOLO) V4. Specifically, first, the lightweight architecture MobileNetV3 is introduced as the backbone feature extractor to accelerate the detection speed by compressing the parameters. Second, for better detection of small-size ships, the squeeze-and-excitation module is used to apply the attention mechanism to the channel. Meanwhile, the scaled exponential linear unit non-liner activation function replaces the rectified linear unit activation function of the MobileNetV3 shallow layer, which optimizes the convergence effect of the model. Third, an adaptive anchor-selection algorithm for the detection of ships with various shapes is designed. Compared with other well-established models based on convolutional neural network (CNN), including single shot multi-box detector, Faster region based-CNN, and you only look once version 4 baseline for detecting ships, our improved method yields impressive results in our dataset. After extensive testing, the mean average precision of the proposed method can reach 97.43%, with the detection time per frame reaching 38 ms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馒头完成签到,获得积分20
刚刚
CipherSage应助独特凡松采纳,获得10
刚刚
慕青应助科研苦行僧采纳,获得20
5秒前
6秒前
随遇而安完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
RenHP发布了新的文献求助10
11秒前
12秒前
wangmou完成签到,获得积分10
12秒前
12秒前
Davidfly20发布了新的文献求助10
13秒前
13秒前
王羊补牢发布了新的文献求助10
14秒前
15秒前
CHENG完成签到,获得积分10
15秒前
yue完成签到,获得积分10
15秒前
科研通AI2S应助Sebastian采纳,获得10
15秒前
羞涩的西牛完成签到 ,获得积分10
16秒前
博修发布了新的文献求助10
16秒前
科目三应助怡然的怀莲采纳,获得10
17秒前
17秒前
hq发布了新的文献求助10
17秒前
18秒前
8R60d8应助果实采纳,获得10
18秒前
内向花卷发布了新的文献求助10
20秒前
汉堡包应助感动的寒风采纳,获得10
21秒前
topsun完成签到,获得积分10
21秒前
HeWA完成签到,获得积分10
21秒前
23秒前
外向语蝶发布了新的文献求助10
24秒前
Liangyu发布了新的文献求助10
28秒前
大尧子完成签到 ,获得积分10
28秒前
29秒前
eli完成签到,获得积分10
31秒前
李ye发布了新的文献求助30
31秒前
wwj完成签到,获得积分10
31秒前
33秒前
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961075
求助须知:如何正确求助?哪些是违规求助? 3507282
关于积分的说明 11135478
捐赠科研通 3239777
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872379
科研通“疑难数据库(出版商)”最低求助积分说明 803150