Attention guided deep features for accurate body mass index estimation

人工智能 计算机科学 体重不足 卷积神经网络 深度学习 模式识别(心理学) 体质指数 面子(社会学概念) 姿势 机器学习 超重 计算机视觉 医学 社会科学 病理 社会学
作者
Zhi Jin,Junjia Huang,Aolin Xiong,Yuxian Pang,Wenjin Wang,Beichen Ding
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:154: 22-28 被引量:6
标识
DOI:10.1016/j.patrec.2022.01.002
摘要

• An end-to-end deep learning framework is proposed to obtain BMI from 2D body images. • Combine attention mechanism with the deep network to enhance the performance. • Extensive experiments prove the proposed network outperforms the SOAT approaches. Body Mass Index (BMI) has been widely used as an indicator to evaluate the health condition of individuals, classifying a person as underweight, normal weight, overweight, or obese. Recently, several methods have been proposed to obtain BMI values based on the visual information, e.g., face images or 3D body images. These methods by extrapolating anthropometric features from face images or 3D body images are advanced in BMI estimation accuracy, however, they suffer from the difficulties of obtaining the required data due to the privacy issue or the 3D camera limitations. Moreover, these methods are hard to achieve satisfactory performance when they are directly applied to 2D body images. To tackle these problems, we propose to estimate BMI results from 2D body images by an end-to-end Convolutional Neural Network (CNN) with attention guidance. The proposed method is evaluated on our collected dataset. Extensive experiments confirm that the proposed framework outperforms state-of-the-art approaches in most cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ShanYexia发布了新的文献求助10
1秒前
JevonCheung完成签到 ,获得积分10
1秒前
LLLLLL发布了新的文献求助10
1秒前
boyis发布了新的文献求助30
1秒前
1秒前
CD56发布了新的文献求助30
1秒前
Lucas应助shine采纳,获得10
2秒前
乐乐应助Me采纳,获得10
2秒前
展锋完成签到,获得积分10
2秒前
wangping发布了新的文献求助10
2秒前
2秒前
烟花应助青葱年华rr采纳,获得10
2秒前
mooncake187完成签到,获得积分10
3秒前
yu完成签到,获得积分10
3秒前
3秒前
斯文败类应助幽壑之潜蛟采纳,获得10
3秒前
Ace_killer发布了新的文献求助10
4秒前
4秒前
柠檬不吃酸完成签到 ,获得积分10
4秒前
隐形曼青应助geold采纳,获得10
4秒前
等一轮明月完成签到 ,获得积分20
4秒前
蔺文博完成签到,获得积分10
4秒前
小凯同学完成签到,获得积分20
4秒前
Akim应助stone采纳,获得10
5秒前
5秒前
6秒前
6秒前
wuludie应助徐老师采纳,获得30
6秒前
七田皿发布了新的文献求助10
6秒前
刘岩松发布了新的文献求助10
7秒前
7秒前
2233发布了新的文献求助10
7秒前
8秒前
月圆夜完成签到,获得积分10
8秒前
8秒前
CD56完成签到,获得积分10
8秒前
8秒前
顾矜应助科研人采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803