Attention guided deep features for accurate body mass index estimation

人工智能 计算机科学 体重不足 卷积神经网络 深度学习 模式识别(心理学) 体质指数 面子(社会学概念) 姿势 机器学习 超重 计算机视觉 医学 社会科学 病理 社会学
作者
Zhi Jin,Junjia Huang,Aolin Xiong,Yuxian Pang,Wenjin Wang,Beichen Ding
出处
期刊:Pattern Recognition Letters [Elsevier]
卷期号:154: 22-28 被引量:6
标识
DOI:10.1016/j.patrec.2022.01.002
摘要

• An end-to-end deep learning framework is proposed to obtain BMI from 2D body images. • Combine attention mechanism with the deep network to enhance the performance. • Extensive experiments prove the proposed network outperforms the SOAT approaches. Body Mass Index (BMI) has been widely used as an indicator to evaluate the health condition of individuals, classifying a person as underweight, normal weight, overweight, or obese. Recently, several methods have been proposed to obtain BMI values based on the visual information, e.g., face images or 3D body images. These methods by extrapolating anthropometric features from face images or 3D body images are advanced in BMI estimation accuracy, however, they suffer from the difficulties of obtaining the required data due to the privacy issue or the 3D camera limitations. Moreover, these methods are hard to achieve satisfactory performance when they are directly applied to 2D body images. To tackle these problems, we propose to estimate BMI results from 2D body images by an end-to-end Convolutional Neural Network (CNN) with attention guidance. The proposed method is evaluated on our collected dataset. Extensive experiments confirm that the proposed framework outperforms state-of-the-art approaches in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英俊的铭应助seebeg采纳,获得20
2秒前
2秒前
3秒前
醉酒戏红尘完成签到,获得积分10
4秒前
4秒前
高妖丽发布了新的文献求助10
5秒前
5秒前
6秒前
彭于晏应助haoooooooooooooo采纳,获得10
6秒前
6秒前
7秒前
7秒前
8秒前
9秒前
iVANPENNY应助Tetrahydron采纳,获得10
9秒前
天上人间发布了新的文献求助10
9秒前
田様应助T拐拐采纳,获得10
10秒前
矿小黑完成签到,获得积分10
10秒前
共享精神应助zeng采纳,获得10
11秒前
man完成签到,获得积分10
11秒前
11秒前
烟花应助DYX采纳,获得10
11秒前
qqqqqq发布了新的文献求助10
12秒前
爆米花应助YY采纳,获得10
12秒前
12秒前
Steven发布了新的文献求助10
12秒前
ccc发布了新的文献求助10
12秒前
毛豆应助YuxiLuo采纳,获得10
13秒前
geold完成签到,获得积分10
14秒前
shimly0101xx完成签到,获得积分10
14秒前
14秒前
木木枭发布了新的文献求助10
15秒前
NexusExplorer应助如意绮彤采纳,获得30
15秒前
16秒前
完美世界应助朱凌娇采纳,获得10
16秒前
17秒前
汤飞柏发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600