Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches

偏最小二乘回归 支持向量机 均方误差 回归 人工神经网络 统计 回归分析 决定系数 校准 线性回归 数学 近红外光谱 主成分分析 主成分回归 相关系数 多元统计 预测建模 人工智能 计算机科学 光学 物理
作者
Agus Arip Munawar,Zulfahrizal,Hesti Meilina,Elke Pawelzik
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:193: 106657-106657 被引量:17
标识
DOI:10.1016/j.compag.2021.106657
摘要

In the present study, the potential of near infrared spectroscopy (NIRS) as a rapid and non-destructive tools for quality attributes measurement of intact mango was investigated. Three different regression approaches namely partial least square regression (PLSR), support vector machine regression (SVMR), and artificial neural network (ANN) were used and compared in predicting total acidity (TA) of intact mangos. This quality parameter prediction models were established based on near infrared diffuse reflectance spectra acquired in wavelength range from 1000 to 2500 nm. Standard normal variate (SNV) transformation was applied as spectra enhancement prior to prediction models development. The results obtained show that ANN and SVMR are better than PLSR for TA prediction. The optimal prediction model for TA quality attribute were obtained by ANN with the first 4 principal components (PCs) scores as input. The coefficient determination of calibration (R2cal) and prediction (R2pred), the root-mean square error of calibration (RMSEC) and prediction (RMSEP), and the ratio of prediction to deviation (RPD) were 0.97, 0.89, 25.29 mg100g−1, 28.42 mg100g−1 and 4.02, respectively. The overall results satisfactorily demonstrate that NIRS technology combined with proper regression approaches has the promising results to determine TA of intact mango non-destructively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XIXIw发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
慕慕倾发布了新的文献求助10
1秒前
ccjjpp1243发布了新的文献求助10
2秒前
3秒前
poohpooh完成签到,获得积分10
3秒前
3秒前
科研通AI2S应助萌酱采纳,获得10
4秒前
一一一完成签到,获得积分10
4秒前
奇异物质发布了新的文献求助10
4秒前
斯文的青枫完成签到,获得积分10
4秒前
爆米花应助ZHQ采纳,获得10
6秒前
HHHH发布了新的文献求助10
7秒前
9秒前
9秒前
11秒前
知行合一发布了新的文献求助10
11秒前
剩下的盛夏完成签到,获得积分10
12秒前
majiawei完成签到,获得积分10
14秒前
丘比特应助ccjjpp1243采纳,获得10
15秒前
17秒前
17秒前
17秒前
17秒前
无花果应助plant采纳,获得10
18秒前
gwenjing发布了新的文献求助10
18秒前
故酒发布了新的文献求助100
19秒前
19秒前
niulugai完成签到,获得积分10
20秒前
沉默妙竹发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助150
21秒前
22秒前
lt发布了新的文献求助10
22秒前
22秒前
22秒前
24秒前
24秒前
高分求助中
A Comprehensive Review on the Chemical Composition, Pharmacology and Clinical Applications of Ganoderma 3000
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956172
求助须知:如何正确求助?哪些是违规求助? 3502400
关于积分的说明 11107420
捐赠科研通 3232954
什么是DOI,文献DOI怎么找? 1787093
邀请新用户注册赠送积分活动 870482
科研通“疑难数据库(出版商)”最低求助积分说明 802019