Forecasting tourist arrivals using dual decomposition strategy and an improved fuzzy time series method

计算机科学 水准点(测量) 对偶(语法数字) 系列(地层学) 分解 模糊逻辑 随机性 时间序列 旅游 离散化 数据挖掘 数学优化 计量经济学 人工智能 机器学习 数学 统计 地理 艺术 古生物学 生态学 数学分析 文学类 大地测量学 考古 生物
作者
Xiaozhen Liang,Zhikun Wu
出处
期刊:Neural Computing and Applications [Springer Science+Business Media]
卷期号:35 (10): 7161-7183 被引量:2
标识
DOI:10.1007/s00521-021-06671-7
摘要

Tourist arrivals forecasting has become an increasingly hot issue due to its important role in the tourism industry and hence the whole economy of a country. However, owing to the complex characteristics of tourist arrivals series, such as seasonality, randomness, and non-linearity, forecasting tourist arrivals remains a challenging task. In this paper, a hybrid model of dual decomposition and an improved fuzzy time series method is proposed for tourist arrivals forecasting. In the novel model, two stages are mainly involved, i.e., dual decomposition and integrated forecasting. In the first stage, a dual decomposition strategy, which can overcome the potential defects of individual decomposition approaches, is designed to fully extract the main features of the tourist arrivals series and reduce the data complexity. In the second stage, a fuzzy time series method with fuzzy C-means algorithm as the discretization method is developed for prediction. In the empirical study, the proposed model is implemented to predict the monthly tourist arrivals to Hong Kong from USA, UK, and Germany. The results show that our hybrid model can obtain more accurate and more robust prediction results than benchmark models. Relative to the benchmark fuzzy time series models, the hybrid models using traditional decomposition methods and strategies, as well as the traditional single prediction models, our proposed model shows a significant improvement, with the improvement percentages at about 80, 70, and 50%, respectively. Therefore, we can conclude that the proposed model is a very promising tool for forecasting future tourist arrivals or other related fields with complex time series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
李昊完成签到,获得积分10
7秒前
迪克bin发布了新的文献求助10
7秒前
小鬼丶完成签到,获得积分20
7秒前
张宇轩发布了新的文献求助10
7秒前
8秒前
8秒前
佳佳应助小绵羊采纳,获得10
8秒前
hui_L发布了新的文献求助10
8秒前
M1982发布了新的文献求助10
12秒前
12秒前
13秒前
皓月星辰发布了新的文献求助10
16秒前
hui_L完成签到,获得积分20
16秒前
18秒前
18秒前
今后应助结实的小土豆采纳,获得10
19秒前
赘婿应助一一采纳,获得10
19秒前
xiaocui发布了新的文献求助10
19秒前
HouShipeng完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
HouShipeng发布了新的文献求助10
24秒前
xiaocui完成签到,获得积分10
25秒前
内向晓旋完成签到,获得积分10
25秒前
un发布了新的文献求助10
25秒前
科研小白发布了新的文献求助10
26秒前
菠菜发布了新的文献求助80
26秒前
Suliove完成签到,获得积分10
27秒前
28秒前
冷静凡天应助坦率的可仁采纳,获得10
28秒前
Ava应助科研張采纳,获得10
28秒前
聂先生完成签到,获得积分10
29秒前
一一发布了新的文献求助10
30秒前
30秒前
芭娜55发布了新的文献求助10
33秒前
angelo发布了新的文献求助30
33秒前
桐桐应助小肥吴采纳,获得10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579