Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs

可扩展性 计算机科学 特征学习 理论计算机科学 图形 嵌入 半监督学习 图嵌入 拓扑图论 人工智能 计算 机器学习 电压图 算法 折线图 数据库
作者
Yizhu Jiao,Yun Xiong,Jiawei Zhang,Yao Zhang,Tianqi Zhang,Yangyong Zhu
出处
期刊:Knowledge and Information Systems [Springer Nature]
被引量:1
标识
DOI:10.1007/s10115-021-01635-8
摘要

Graph representation learning has attracted lots of attention recently. Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs. Thus, it remains a great challenge to capture rich information in large-scale graph data. Besides, these methods mainly focus on supervised learning and highly depend on node label information, which is expensive to obtain in the real world. As to unsupervised network embedding approaches, they overemphasize node proximity instead, whose learned representations can hardly be used in downstream application tasks directly. In recent years, emerging self-supervised learning provides a potential solution to address the aforementioned problems. However, existing self-supervised works also operate on the complete graph data and are biased to fit either global or very local (1-hop neighborhood) graph structures in defining the mutual information-based loss terms. In this paper, a novel self-supervised representation learning method via Sub-graph Contrast, namely Subg-Con, is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information. Instead of learning on the complete input graph data, with a novel data augmentation strategy, Subg-Con learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead. Besides, we further enhance the subgraph representation learning via mutual information maximum to preserve more topology and feature information. Compared with existing graph representation learning approaches, Subg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization. Extensive experiments verify both the effectiveness and the efficiency of our work. We compared it with both classic and state-of-the-art graph representation learning approaches. Various downstream tasks are done on multiple real-world large-scale benchmark datasets from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助tutu采纳,获得10
刚刚
Marianna发布了新的文献求助10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
2秒前
dounai完成签到,获得积分10
3秒前
dingdang发布了新的文献求助10
4秒前
闾丘曼安完成签到,获得积分10
4秒前
4秒前
4秒前
肖恩发布了新的文献求助10
4秒前
伶俐的雁蓉完成签到,获得积分10
5秒前
热心航空完成签到,获得积分10
6秒前
耶耶完成签到,获得积分10
6秒前
wangxiaoqing发布了新的文献求助10
6秒前
敏感的归头完成签到,获得积分10
7秒前
ZH发布了新的文献求助10
7秒前
bolter完成签到,获得积分10
7秒前
多宝完成签到,获得积分10
8秒前
黄黄黄完成签到,获得积分10
8秒前
热心航空发布了新的文献求助10
8秒前
可靠的亦竹完成签到 ,获得积分10
10秒前
11秒前
11秒前
click完成签到 ,获得积分10
11秒前
稳重紫蓝完成签到 ,获得积分10
11秒前
z.完成签到,获得积分20
12秒前
pazlye发布了新的文献求助10
12秒前
舒适的藏花完成签到 ,获得积分10
12秒前
Rosaline完成签到 ,获得积分10
13秒前
esther完成签到,获得积分10
13秒前
superLmy完成签到 ,获得积分10
14秒前
朴实的念双完成签到,获得积分10
16秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Pediatric Nurse Telephone Triage 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3350209
求助须知:如何正确求助?哪些是违规求助? 2976006
关于积分的说明 8672509
捐赠科研通 2657031
什么是DOI,文献DOI怎么找? 1454863
科研通“疑难数据库(出版商)”最低求助积分说明 673534
邀请新用户注册赠送积分活动 664017