Scalable self-supervised graph representation learning via enhancing and contrasting subgraphs

可扩展性 计算机科学 特征学习 理论计算机科学 图形 嵌入 半监督学习 图嵌入 拓扑图论 人工智能 计算 机器学习 电压图 算法 折线图 数据库
作者
Yizhu Jiao,Yun Xiong,Jiawei Zhang,Yao Zhang,Tianqi Zhang,Yangyong Zhu
出处
期刊:Knowledge and Information Systems [Springer Science+Business Media]
被引量:1
标识
DOI:10.1007/s10115-021-01635-8
摘要

Graph representation learning has attracted lots of attention recently. Existing graph neural networks fed with the complete graph data are not scalable due to limited computation and memory costs. Thus, it remains a great challenge to capture rich information in large-scale graph data. Besides, these methods mainly focus on supervised learning and highly depend on node label information, which is expensive to obtain in the real world. As to unsupervised network embedding approaches, they overemphasize node proximity instead, whose learned representations can hardly be used in downstream application tasks directly. In recent years, emerging self-supervised learning provides a potential solution to address the aforementioned problems. However, existing self-supervised works also operate on the complete graph data and are biased to fit either global or very local (1-hop neighborhood) graph structures in defining the mutual information-based loss terms. In this paper, a novel self-supervised representation learning method via Sub-graph Contrast, namely Subg-Con, is proposed by utilizing the strong correlation between central nodes and their sampled subgraphs to capture regional structure information. Instead of learning on the complete input graph data, with a novel data augmentation strategy, Subg-Con learns node representations through a contrastive loss defined based on subgraphs sampled from the original graph instead. Besides, we further enhance the subgraph representation learning via mutual information maximum to preserve more topology and feature information. Compared with existing graph representation learning approaches, Subg-Con has prominent performance advantages in weaker supervision requirements, model learning scalability, and parallelization. Extensive experiments verify both the effectiveness and the efficiency of our work. We compared it with both classic and state-of-the-art graph representation learning approaches. Various downstream tasks are done on multiple real-world large-scale benchmark datasets from different domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妖精完成签到 ,获得积分10
1秒前
清爽妙竹应助科研通管家采纳,获得10
1秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得20
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
鸣笛应助科研通管家采纳,获得30
2秒前
清爽妙竹应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
清爽妙竹应助科研通管家采纳,获得10
2秒前
清爽妙竹应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
自然的亦巧完成签到,获得积分10
3秒前
yuyuy发布了新的文献求助10
4秒前
4秒前
平淡茈完成签到,获得积分10
4秒前
乐乐应助轻松盼雁采纳,获得10
5秒前
彭于晏应助99411采纳,获得10
6秒前
7秒前
Irving发布了新的文献求助10
8秒前
传奇3应助木子采纳,获得10
8秒前
狸宝的小果子完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
星辰大海应助好好做人采纳,获得10
11秒前
杨恭鑫关注了科研通微信公众号
11秒前
自然灵波发布了新的文献求助10
12秒前
iNk应助顺利的绿真采纳,获得20
12秒前
13秒前
天天快乐应助包语梦采纳,获得10
13秒前
yuyuy完成签到,获得积分10
13秒前
彭于晏应助欢呼老鼠采纳,获得10
14秒前
袁科研完成签到,获得积分10
14秒前
14秒前
杨柳完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953094
求助须知:如何正确求助?哪些是违规求助? 3498438
关于积分的说明 11092087
捐赠科研通 3229062
什么是DOI,文献DOI怎么找? 1785211
邀请新用户注册赠送积分活动 869242
科研通“疑难数据库(出版商)”最低求助积分说明 801415