Confronted to changes in temperatures, plants readjust their biochemical makeup to adapt and survive. The fact that temperature changes can induce cellular responses indicates that temperature is sensed and that the temperature signal is transduced into the cell. While the signalling pathways triggered temperature changes are well described, the way plants sense temperature is often considered as elusive. This review is focused on the mechanisms by which plants sense temperature. We show that plants have no internal thermometer as such, but that the very alterations in cellular equilibria triggered by temperature changes act as networked thermostats to sense heat and cold. Amongst these temperature-sensitive devices, we identified membrane fluidity, protein conformation, cytoskeleton depolymerization, and metabolic reactions. Besides, other molecular switches are proposed. A model of the temperature sensing “machinery” is proposed. Finally, we discuss the specificities of temperature sensing, showing that signalling events can feed-back perception steps.