颗粒过滤器
无味变换
卡尔曼滤波器
辅助粒子过滤器
蒙特卡罗方法
集合卡尔曼滤波器
蒙特卡罗局部化
领域(数学分析)
扩展卡尔曼滤波器
计算机科学
控制理论(社会学)
高斯分布
国家(计算机科学)
重要性抽样
粒子(生态学)
数学优化
数学
算法
人工智能
物理
统计
数学分析
地质学
海洋学
控制(管理)
量子力学
作者
Miao Yu,Wen‐Hua Chen,Jonathon A. Chambers
标识
DOI:10.1109/sspd.2014.6943325
摘要
This paper addresses state estimation where domain knowledge is represented by non-linear inequality constraints. To cope with non-Gaussian state distribution caused by the utilisation of domain knowledge, a truncated unscented particle filter method is proposed in this paper. Different from other particle filtering schemes, a truncated unscented Kalman filter is adopted as the importance function for sampling new particles in the proposed truncated unscented particle scheme. Consequently more effective particles are generated and a better state estimation result is then obtained. The advantages of the proposed truncated unscented particle filter algorithm over the state-of-the-art particle filters are demonstrated through Monte-Carlo simulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI