An AUC-based permutation variable importance measure for random forests

排列(音乐) 随机排列 随机森林 排名(信息检索) 重采样 接收机工作特性 算法 计算机科学 统计 班级(哲学) 数学 数据挖掘 人工智能 机器学习 组合数学 物理 块(置换群论) 声学
作者
Silke Janitza,Carolin Strobl,Anne‐Laure Boulesteix
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:14 (1) 被引量:177
标识
DOI:10.1186/1471-2105-14-119
摘要

The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半斤完成签到 ,获得积分10
1秒前
4秒前
yain完成签到 ,获得积分10
6秒前
123完成签到 ,获得积分10
8秒前
Jay完成签到,获得积分10
12秒前
xue完成签到 ,获得积分10
12秒前
光坠星海完成签到 ,获得积分10
17秒前
青水完成签到 ,获得积分10
17秒前
制药人完成签到 ,获得积分10
19秒前
天天开心完成签到 ,获得积分10
19秒前
21秒前
LL完成签到 ,获得积分10
23秒前
Skyllne完成签到 ,获得积分10
24秒前
铜锣烧完成签到 ,获得积分10
26秒前
L_chen发布了新的文献求助10
26秒前
11完成签到 ,获得积分10
26秒前
稳重乌冬面完成签到 ,获得积分10
27秒前
胖胖完成签到 ,获得积分0
27秒前
27秒前
晓欣完成签到 ,获得积分10
28秒前
清秀尔竹完成签到 ,获得积分10
30秒前
Lny发布了新的文献求助30
30秒前
wan发布了新的文献求助10
32秒前
红毛兔完成签到,获得积分10
38秒前
was_3完成签到,获得积分0
40秒前
hxpxp完成签到,获得积分10
42秒前
ycd完成签到,获得积分10
43秒前
CipherSage应助武雨寒采纳,获得10
47秒前
小崔加油完成签到 ,获得积分10
49秒前
薏仁完成签到 ,获得积分10
50秒前
keke完成签到 ,获得积分10
57秒前
adovj完成签到 ,获得积分10
1分钟前
陈砍砍完成签到 ,获得积分10
1分钟前
donnolea完成签到 ,获得积分10
1分钟前
xiaochaoge完成签到,获得积分10
1分钟前
不扯先生完成签到,获得积分20
1分钟前
隐形的非笑完成签到 ,获得积分10
1分钟前
安然完成签到 ,获得积分10
1分钟前
聪慧芷巧完成签到,获得积分10
1分钟前
思绪摸摸头完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5174876
求助须知:如何正确求助?哪些是违规求助? 4364244
关于积分的说明 13586332
捐赠科研通 4213117
什么是DOI,文献DOI怎么找? 2310959
邀请新用户注册赠送积分活动 1309910
关于科研通互助平台的介绍 1257730