An AUC-based permutation variable importance measure for random forests

排列(音乐) 随机排列 随机森林 排名(信息检索) 重采样 接收机工作特性 算法 计算机科学 统计 班级(哲学) 数学 数据挖掘 人工智能 机器学习 组合数学 物理 块(置换群论) 声学
作者
Silke Janitza,Carolin Strobl,Anne‐Laure Boulesteix
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:14 (1) 被引量:177
标识
DOI:10.1186/1471-2105-14-119
摘要

The random forest (RF) method is a commonly used tool for classification with high dimensional data as well as for ranking candidate predictors based on the so-called random forest variable importance measures (VIMs). However the classification performance of RF is known to be suboptimal in case of strongly unbalanced data, i.e. data where response class sizes differ considerably. Suggestions were made to obtain better classification performance based either on sampling procedures or on cost sensitivity analyses. However to our knowledge the performance of the VIMs has not yet been examined in the case of unbalanced response classes. In this paper we explore the performance of the permutation VIM for unbalanced data settings and introduce an alternative permutation VIM based on the area under the curve (AUC) that is expected to be more robust towards class imbalance. We investigated the performance of the standard permutation VIM and of our novel AUC-based permutation VIM for different class imbalance levels using simulated data and real data. The results suggest that the new AUC-based permutation VIM outperforms the standard permutation VIM for unbalanced data settings while both permutation VIMs have equal performance for balanced data settings. The standard permutation VIM loses its ability to discriminate between associated predictors and predictors not associated with the response for increasing class imbalance. It is outperformed by our new AUC-based permutation VIM for unbalanced data settings, while the performance of both VIMs is very similar in the case of balanced classes. The new AUC-based VIM is implemented in the R package party for the unbiased RF variant based on conditional inference trees. The codes implementing our study are available from the companion website: http://www.ibe.med.uni-muenchen.de/organisation/mitarbeiter/070_drittmittel/janitza/index.html
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vivre223完成签到,获得积分10
刚刚
AKYDXS完成签到,获得积分10
刚刚
酷酷紫夏完成签到,获得积分10
1秒前
yingtiao完成签到,获得积分10
1秒前
xiongqi完成签到 ,获得积分10
2秒前
66668888发布了新的文献求助10
2秒前
单纯芹菜完成签到,获得积分10
2秒前
浮游应助JOY采纳,获得10
2秒前
3秒前
3秒前
4秒前
鳗鱼静珊完成签到 ,获得积分20
4秒前
怪了个奇发布了新的文献求助30
4秒前
4秒前
jzmupyj发布了新的文献求助10
4秒前
haha哈哈哈发布了新的文献求助10
4秒前
简单澜发布了新的文献求助10
4秒前
鹿璟璟完成签到,获得积分10
4秒前
个高视野远完成签到,获得积分10
5秒前
聪明的小海豚完成签到,获得积分10
5秒前
FY完成签到,获得积分10
5秒前
酥脆多汁的大油条完成签到,获得积分10
6秒前
7秒前
不安海蓝完成签到,获得积分10
7秒前
7秒前
rkay完成签到,获得积分10
7秒前
羊布吃稻发布了新的文献求助30
8秒前
慕月完成签到 ,获得积分10
8秒前
9秒前
9秒前
卷卷发布了新的文献求助10
9秒前
9秒前
劉浏琉完成签到,获得积分10
9秒前
简柠完成签到,获得积分10
9秒前
lessismore发布了新的文献求助10
11秒前
11秒前
11秒前
Kong完成签到,获得积分10
11秒前
英俊安蕾完成签到,获得积分10
12秒前
一一完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206