倍周期分岔
分叉理论的生物学应用
跨临界分岔
鞍结分岔
中央歧管
分岔图
数学
博格达诺夫-塔肯分岔
干草叉分叉
霍普夫分叉
同宿分支
分叉
功能性反应
分岔理论
混乱的
理论(学习稳定性)
应用数学
数学分析
控制理论(社会学)
物理
捕食
非线性系统
捕食者
计算机科学
古生物学
量子力学
机器学习
生物
控制(管理)
人工智能
作者
Zengyun Hu,Zhidong Teng,Long Zhang
标识
DOI:10.1016/j.nonrwa.2011.02.009
摘要
The paper studies the dynamical behaviors of a discrete predator–prey system with nonmonotonic functional response. The local stability of equilibria of the model is obtained. The model undergoes flip bifurcation and Hopf bifurcation by using the center manifold theorem and the bifurcation theory. Numerical simulations not only illustrate our results, but also exhibit the complex dynamical behaviors of the model, such as the period-doubling bifurcation in periods 2, 4 and 8, and quasi-periodic orbits and chaotic sets. The most interesting aspect is choosing the same parameters and the initial value of the model; then we vary the parameter K, and obtain series bifurcations, such as flip bifurcation and Hopf bifurcation.
科研通智能强力驱动
Strongly Powered by AbleSci AI