材料科学
时间分辨率
近红外光谱
光学
生物医学工程
荧光寿命成像显微镜
荧光
图像分辨率
神经影像学
医学
物理
精神科
作者
Guosong Hong,Shuo Diao,Junlei Chang,Alexander L. Antaris,Changxin Chen,Bo Zhang,Su Zhao,Dmitriy N. Atochin,Paul L. Huang,Katrin I. Andreasson,Calvin J. Kuo,Hongjie Dai
出处
期刊:Nature Photonics
[Nature Portfolio]
日期:2014-08-01
卷期号:8 (9): 723-730
被引量:929
标识
DOI:10.1038/nphoton.2014.166
摘要
To date, brain imaging has largely relied on X-ray computed tomography and magnetic resonance angiography with limited spatial resolution and long scanning times. Fluorescence-based brain imaging in the visible and traditional near-infrared regions (400-900 nm) is an alternative but currently requires craniotomy, cranial windows and skull thinning techniques, and the penetration depth is limited to 1-2 mm due to light scattering. Here, we report through-scalp and through-skull fluorescence imaging of mouse cerebral vasculature without craniotomy utilizing the intrinsic photoluminescence of single-walled carbon nanotubes in the 1.3-1.4 micrometre near-infrared window. Reduced photon scattering in this spectral region allows fluorescence imaging reaching a depth of >2 mm in mouse brain with sub-10 micrometre resolution. An imaging rate of ~5.3 frames/s allows for dynamic recording of blood perfusion in the cerebral vessels with sufficient temporal resolution, providing real-time assessment of blood flow anomaly in a mouse middle cerebral artery occlusion stroke model.
科研通智能强力驱动
Strongly Powered by AbleSci AI