布朗运动
数学
动力系统理论
摄动(天文学)
极限(数学)
西格玛
人口
动力系统(定义)
统计物理学
数学分析
数学物理
统计
物理
量子力学
人口学
社会学
作者
Xiaoyue Li,Xuerong Mao
标识
DOI:10.3934/dcds.2009.24.523
摘要
In this paper, we consider a non-autonomous stochasticLotka-Volterra competitive system $ dx_i (t) = x_i(t)$[($b_i(t)$-$\sum_{j=1}^{n} a_{ij}(t)x_j(t))$$dt$$+\sigma_i(t) d B_i(t)]$, where $B_i(t)$($i=1 ,\ 2,\cdots,\ n$) areindependent standard Brownian motions. Some dynamical properties arediscussed and the sufficient conditions for the existence of globalpositive solutions, stochastic permanence, extinction as well asglobal attractivity are obtained. In addition, the limit of theaverage in time of the sample paths of solutions is estimated.
科研通智能强力驱动
Strongly Powered by AbleSci AI