二进制数
职位(财务)
粒子群优化
算法
计算机科学
基础(线性代数)
人口
多群优化
价值(数学)
空格(标点符号)
粒子(生态学)
群体行为
数学
数学优化
人工智能
机器学习
财务
社会学
经济
操作系统
人口学
算术
几何学
海洋学
地质学
作者
James Kennedy,R.C. Eberhart
出处
期刊:Systems, Man and Cybernetics
日期:2002-11-22
卷期号:5: 4104-4108
被引量:4352
标识
DOI:10.1109/icsmc.1997.637339
摘要
The particle swarm algorithm adjusts the trajectories of a population of "particles" through a problem space on the basis of information about each particle's previous best performance and the best previous performance of its neighbors. Previous versions of the particle swarm have operated in continuous space, where trajectories are defined as changes in position on some number of dimensions. The paper reports a reworking of the algorithm to operate on discrete binary variables. In the binary version, trajectories are changes in the probability that a coordinate will take on a zero or one value. Examples, applications, and issues are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI