Computer Simulation of Molecular Dynamics: Methodology, Applications, and Perspectives in Chemistry

分子动力学 领域(数学) 计算机科学 统计物理学 功能(生物学) 多样性(控制论) 力场(虚构) 空格(标点符号) 计算化学 化学 物理 数学 人工智能 进化生物学 纯数学 生物 操作系统
作者
Wilfred F. van Gunsteren,Herman J. C. Berendsen
出处
期刊:Angewandte Chemie [Wiley]
卷期号:29 (9): 992-1023 被引量:1480
标识
DOI:10.1002/anie.199009921
摘要

Abstract During recent decades it has become feasible to simulate the dynamics of molecular systems on a computer. The method of molecular dynamics (MD) solves Newton's equations of motion for a molecular system, which results in trajectories for all atoms in the system. From these atomic trajectories a variety of properties can be calculated. The aim of computer simulations of molecular systems is to compute macroscopic behavior from microscopic interactions. The main contributions a microscopic consideration can offer are (1) the understanding and (2) interpretation of experimental results, (3) semiquantitative estimates of experimental results, and (4) the capability to interpolate or extrapolate experimental data into regions that are only difficultly accessible in the laboratory. One of the two basic problems in the field of molecular modeling and simulation is how to efficiently search the vast configuration space which is spanned by all possible molecular conformations for the global low (free) energy regions which will be populated by a molecular system in thermal equilibrium. The other basic problem is the derivation of a sufficiently accurate interaction energy function or force field for the molecular system of interest. An important part of the art of computer simulation is to choose the unavoidable assumptions, approximations and simplifications of the molecular model and computational procedure such that their contributions to the overall inaccuracy are of comparable size, without affecting significantly the property of interest. Methodology and some practical applications of computer simulation in the field of (bio)chemistry will be reviewed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳晓亦应助木头人采纳,获得10
1秒前
科研通AI5应助想瘦的海豹采纳,获得10
1秒前
2秒前
科研通AI5应助adazbd采纳,获得10
2秒前
bkagyin应助皮皮桂采纳,获得10
2秒前
3秒前
重要的哈密瓜完成签到 ,获得积分10
3秒前
会飞的云完成签到 ,获得积分10
4秒前
4秒前
毕不了业的凡阿哥完成签到,获得积分10
4秒前
野子发布了新的文献求助10
4秒前
berry完成签到,获得积分10
5秒前
6秒前
LUNWENREQUEST发布了新的文献求助10
6秒前
大模型应助匹诺曹采纳,获得10
7秒前
ding应助过时的又槐采纳,获得10
8秒前
11秒前
鄙视注册完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
落寞溪灵完成签到 ,获得积分10
15秒前
玖玖柒idol完成签到,获得积分10
15秒前
曌虞完成签到,获得积分10
15秒前
16秒前
啥,这都是啥完成签到,获得积分10
16秒前
皮皮桂发布了新的文献求助10
17秒前
18秒前
大大发布了新的文献求助10
18秒前
19秒前
orixero应助wang1090采纳,获得30
21秒前
21秒前
l11x29发布了新的文献求助10
23秒前
lin完成签到,获得积分10
23秒前
大侠发布了新的文献求助10
24秒前
24秒前
是锦锦呀完成签到,获得积分10
24秒前
24秒前
李秋静发布了新的文献求助10
25秒前
zhen发布了新的文献求助50
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808