摘要
Journal of Cellular PhysiologyVolume 72, Issue S1 p. 19-34 Article Muscle differentiation and macromolecular synthesis† John R. Coleman, John R. Coleman Division of Biological and Medical Sciences, Brown University, Providence, Rhode IslandSearch for more papers by this authorAnnette W. Coleman, Annette W. Coleman Division of Biological and Medical Sciences, Brown University, Providence, Rhode IslandSearch for more papers by this author John R. Coleman, John R. Coleman Division of Biological and Medical Sciences, Brown University, Providence, Rhode IslandSearch for more papers by this authorAnnette W. Coleman, Annette W. Coleman Division of Biological and Medical Sciences, Brown University, Providence, Rhode IslandSearch for more papers by this author First published: October 1968 https://doi.org/10.1002/jcp.1040720404Citations: 179 † This investigation was supported by grant HD-00047 from the National Institutes of Health. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Cytodifferentiation of skeletal muscle has been studied in cell cultures derived from leg muscle of 12-day chicken embryos. Myogenesis in cell culture closely simulates myogenesis in vivo, but is more highly synchronized. Massive cell fusion occurs in control cultures between the second and third days in vitro, during which time most of the myoblasts are swept into syncytia. On successive days, the syncytia mature into cross-striated muscle fibers, and the cultures are progressively overgrown by fibroblastic cells. Myosin-containing cells can be detected at any time by immunofluorescence, and myosin has been measured by quantitative immunological precipitation as early as 3 days in vitro, a few hours after fusion. Myosin in the cultures increases over the next few days, and this is reflected in the rate of incorporation of labeled amino acids into immunologically precipitable myosin. Creatine kinase, assayed spectrophotometrically by linked dehydrogenase reactions, shows a similar pattern: measurable early but rapidly increasing in activity after fusion. That this increase in myosin and creatine kinase is strictly a function of the multinuclear cells is demonstrated by experiments in which the mononuclear cell population has been drastically reduced by treatment with 5-fluorodeoxyuridine shortly after fusion. Myosin synthesis has not been detectable in cells prevented from fusing by growth in 5-bromo-deoxyuridine, but low levels of creatine kinase have been demonstrated. Newly formed muscle fibers incorporate precursors into RNA at lower rates than do mononuclear cells. The relationship of this change in RNA synthesis to the formation of muscle proteins remains obscure. Literature Cited Allen, E. R., and F. A. Pepe 1965 Ultrastructure of developing muscle cells in the chick embryo. Am. J. Anat., 116: 115– 147. Baril, E. F., and H. Herrmann 1967 Studies of muscle development. II. Immunological and enzymatic properties and accumulation of chromatographically homogeneous myosin of the leg musculature of the developing chick. Develop. Biol., 15: 318– 333. Baril, E. F., D. S., Love, and H. Herrmann 1966 Investigation of myosin heterogeneity observed during chromatography on diethylaminoethyl cellulose. J. Biol. Chem., 241: 822– 830. Boyd, J. D. 1960 Development of striated muscle. In, The structure and Function of Muscle, Vol. I., ed. by G. H. Bourne Academic Press Inc., New York, pp. 63– 85. Bray, G. A. 1960 A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem., 1: 279– 285. Burton, K. 1956 Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J., 62: 315– 323. Cheong, L., M. A., Rich, and M. L. Eidinoff 1960 Introduction of the 5-halogenated uracil moiety into deoxyribonucleic acid of mammalian cells in culture. J. Biol. Chem., 235: 1441– 1447. Coleman, J. R., and A. W. Coleman 1966 Reversible inhibition of clonal myogenesis by 5-bromodeoxyuridine. J. Cell Biol., 31: 22A. Coleman, J. R., A. W., Coleman, and H. Roy 1966 Myosin-containing mononuclear cells in myogenic cell cultures from chicken embryo leg muscle. Am. Zool., 6: 234. Eidinoff, M. L., and M. A. Rich 1959 Growth inhibition of a human tumor cell strain by 5-fluoro-2′-deoxyuridine: Time parameters for subsequent reversal by thymidine. Cancer Res., 19: 521– 524. Fischman, D. A. 1967 An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J. Cell Biol., 32: 557– 575. Fiske, C. H., and Y. SubbaRow 1925 The colorimetric determination of phosphorus. J. Biol. Chem., 66: 375– 400. Fogel, M., and V. De Fendi 1967 Infection of muscle cultures from various species with oncogenic DNA viruses (SV-40 and polyoma). Proc. Natl. Acad. Sci. U.S., 58: 967– 973. Hartline, E. J. H. 1968 An ultrastructural analysis of in vitro myogenesis. Ph.D. Thesis, Brown University, Providence, R. I. Hauschka, S. D., and I. R. Konigsberg 1966 The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci. U.S., 55: 119– 126. Heidelberger, C., G., Kaldor, K. L. Mukherjee, and P. B. Danneberg 1960 Studies on fluorinated pyrimidines. XI. In vitro studies on tumor resistance. Cancer Res., 20: 903– 909. Herrmann, H. 1952 Studies of muscle development. Ann. N. Y. Acad. Sci., 55: 99– 108. Heywood, S. M., R. M., Dowben, and A. Rich 1967 The identification of polyribosomes synthesizing myosin. Proc. Natl. Acad. Sci. U. S., 57: 1002– 1009. Heywood, S. M., and A. Rich 1968 In vitro synthesis of native myosin, actin, and tropomyosin from embryonic chick polyribosomes. Proc. Natl. Acad. Sci. U.S., 59: 590– 597. Holtzer, H. 1961 Aspects of chondrogenesis and myogenesis. In, Synthesis of Molecular and Cellular Structure, ed. by D. Rudnick The Ronold Press, New York, pp. 35– 87. Holtzer, H., J. M. Marshall, Jr., and H., Finck 1957 An analysis of myogenesis by the use of fluorescent antimyosin. J. Biophys. Biochem. Cytol., 3: 705– 724. Kitiyakara, A. 1959 The development of nonmyotomic muscles of the chick embryo. Anat. Record, 133: 35– 46. Konigsberg, I. R. 1963 Clonal analysis of myogenesis. Science, 140: 1273– 1284. Konigsberg, I. R. 1965 Aspects of cytodifferentiation of skeletal muscle. In, Organogenesis, ed. by R. L. DeHaan and H. Ursprung Holt, Rinehart, and Winston, New York, pp. 337– 358. Konigsberg, I. R., N., McElvain, M. Tootle, and H. Herrmann 1960 The dissociability of deoxyribonucleic acid synthesis from the development of multinuclearity of muscle cells in culture. J. Biophys. Biochem. Cytol., 8: 333– 343. Lee, H. H., M. E., Kaighn, and J. D. Ebert 1968 Induction of thymidine-3H incorporation in multinucleated myotubes by Rous sarcoma virus. Intern. J. Cancer, 3: 126– 136. Marchok, A. C. 1966 An autoradiographic observation of nucleoside incorporation in developing muscle cells. Exptl. Cell Res., 43: 214– 217. Marchok, A. C., and H. Herrmann 1967 Studies of muscle development. I. Changes in cell proliferation. Develop. Biol., 15: 129– 155. Marchok, A. C., and J. A. Wolff 1968 Studies of muscle development. IV. Some characteristics of RNA polymerase activity in isolated nuclei from developing chick muscle. Biochim. Biophys. Acta, 155: 378– 393. Nass, M. M. K. 1962 Developmental changes in frog actomyosin characteristics. Develop. Biol., 4: 289– 320. Okazaki, K., and H. Holtzer 1965 An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J. Histochem. Cytochem., 13: 726– 739. Okazaki, K., and H. Holtzer 1966 Myogenesis: Fusion, myosin synthesis, and the mitotic cycle. Proc. Natl. Acad. Sci. U.S., 56: 1484– 1490. Reporter, M. C., I. R., Konigsberg, and B. L. Strehler 1963 Kinetics of accumulation of creatine phosphokinase activity in developing embryonic skeletal muscle in vivo and in monolayer culture. Exptl. Cell Res., 30: 410– 417. Roy, H. 1965 Myosin and deoxyribonucleic acid synthesis in cultures of embryonic chick thigh muscle cells. Master's Thesis, Brown University, Providence, R.I. Rueckert, R. R., and G. C. Mueller 1960 Studies on unbalanced growth in tissue culture. I. Induction and consequences of thymidine deficiency. Cancer Res., 20: 1584– 1591. Scott, R. B., and E. Bell 1964 Protein synthesis during development: Control through messenger RNA. Science, 145: 711– 714. Shimada, Y., D. A., Fischman, and A. A. Moscona 1967 The fine structure of embryonic chick skeletal muscle cells differentiated in vitro. J. Cell Biol., 35: 445– 453. Stockdale, F. E., and H. Holtzer 1961 DNA synthesis and myogenesis. Exptl. Cell Res., 24: 508– 520. Stockdale, F., K., Okazaki, M. Nameroff, and H. Holtzer 1964 5-Bromodeoxyuridine: Effect on myogenesis in vitro. Science, 146: 533– 535. Straus, W. L., Jr., and M. E., Rawles 1953 An experimental study of the origin of the trunk musculature and ribs in the chick. Am. J. Anat., 92: 471– 509. Tanzer, M. L., and C. Gilvarg 1959 Creatine and creatine kinase measurement. J. Biol. Chem., 234: 3201– 3204. Werner, I. 1966 Creatine kinase accumulation in cell cultures of chick embryo skeletal muscle and its isoenzyme pattern. Master's Thesis, Brown University, Providence, R.I. Yaffe, D., and M. Feldman 1964 The effect of actinomycin D on heart and thigh muscle cells grown in vitro. Develop. Biol., 9: 347– 366. Yaffe, D., and S. Fuchs 1967 Autoradiographic study of the incorporation of uridine-3H during myogenesis in tissue culture. Develop. Biol., 15: 33– 50. Yaffe, D., and D. Gershon 1967 Multinucleated muscle fibers: Induction of DNA synthesis and mitosis by polyoma virus infection. Nature, 215: 421– 424. Zamenhof, S. 1957 Preparation and assay of deoxyribonucleic acid from animal tissue. In, Methods in Enzymology, Vol. III, ed. by S. P. Colowick and N. O. Kaplan Academic Press Inc., New York, pp. 696– 704. Citing Literature Volume72, IssueS1Supplement: Symposium on Molecular Aspects of DifferentiationOctober 1968Pages 19-34 ReferencesRelatedInformation