半定规划
数学
凸优化
信号(编程语言)
单位球
规范(哲学)
正多边形
相位恢复
缩小
算法
相(物质)
组合数学
数学优化
离散数学
应用数学
计算机科学
数学分析
傅里叶变换
有机化学
化学
政治学
程序设计语言
法学
几何学
作者
Emmanuel J. Candès,Thomas Strohmer,Vladislav Voroninski
摘要
Abstract Suppose we wish to recover a signal \input amssym $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} {\bi x} \in {\Bbb C}^n$ from m intensity measurements of the form $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}} |\langle \bi x,\bi z_i \rangle|^2$ , $i = 1, 2, \ldots, m$ ; that is, from data in which phase information is missing. We prove that if the vectors $\font\abc=cmmib10\def\bi#1{\hbox{\abc#1}}{\bi z}_i$ are sampled independently and uniformly at random on the unit sphere, then the signal x can be recovered exactly (up to a global phase factor) by solving a convenient semidefinite program–‐a trace‐norm minimization problem; this holds with large probability provided that m is on the order of $n {\log n}$ , and without any assumption about the signal whatsoever. This novel result demonstrates that in some instances, the combinatorial phase retrieval problem can be solved by convex programming techniques. Finally, we also prove that our methodology is robust vis‐à‐vis additive noise. © 2012 Wiley Periodicals, Inc.
科研通智能强力驱动
Strongly Powered by AbleSci AI