已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A causal probabilistic network for optimal treatment of bacterial infections

抗生素 概率逻辑 计算机科学 病菌 医学 重症监护医学 生物 人工智能 免疫学 微生物学
作者
Leonard Leibovici,Michael Fishman,Henrik Carl Schønheyder,Christian Riekehr,Brian Kristensen,I. Shraga,Steen Andreassen
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:12 (4): 517-528 被引量:39
标识
DOI:10.1109/69.868905
摘要

The fatality rate associated with severe bacterial infections is about 30 percent and appropriate antibiotic treatment reduces it by half. Unfortunately, about a third of antibiotic treatments prescribed by physicians are inappropriate. We have built a causal probabilistic network (CPN) for treatment of severe bacterial infections. The net is based on modules, each module representing a site of infection. The general configuration of a module is as follows: Major distribution factors define groups of patients, each of them with a definite prevalence of infection caused by a given pathogen. Minor distribution factors multiply the likelihood of one pathogen, without changing much of the prevalence of infection. Infection caused by a pathogen causes local and generalized signs and symptoms. Antibiotic treatment is appropriate if it matches the susceptibility of the pathogens in vitro and appropriate treatment is associated with a gain in life expectancy. This is balanced against the cost of the drug, side effects, and ecological damage, to reach the most cost effective treatment. The net was constructed in such a way that the data for the conditional probability tables will be available, even if it meant sometimes giving up on fine modeling details. For data, we used large databases collected in the last 10 years (1990-2000) and data from the literature. The CPN was a convenient way to combine data from databases collected at different locations and times with published information. Although the net is based on detailed and large databases, its calibration to new sites requires data that is available in most modern hospitals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎的鸡神完成签到,获得积分10
刚刚
小明发布了新的文献求助30
刚刚
扬大小汤完成签到,获得积分10
3秒前
6秒前
kohu完成签到,获得积分10
13秒前
诉与山风听完成签到,获得积分10
17秒前
sober完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
19秒前
lby完成签到 ,获得积分10
20秒前
快乐的睫毛完成签到 ,获得积分10
20秒前
Orange应助诉与山风听采纳,获得10
22秒前
旅行的邱邱子完成签到,获得积分10
24秒前
谦让冰真发布了新的文献求助10
24秒前
25秒前
CodeCraft应助总是学不会采纳,获得20
32秒前
37秒前
李健的小迷弟应助南北采纳,获得30
37秒前
FIN驳回了传奇3应助
40秒前
jasonjiang完成签到 ,获得积分10
40秒前
酷酷涫完成签到 ,获得积分0
43秒前
甜蜜发带完成签到 ,获得积分10
43秒前
活泼蜜蜂完成签到,获得积分10
52秒前
53秒前
58秒前
南北发布了新的文献求助30
59秒前
Miao发布了新的文献求助10
59秒前
虚心傲丝发布了新的文献求助10
59秒前
亲爱的安德烈完成签到,获得积分10
1分钟前
黄12完成签到,获得积分10
1分钟前
南北完成签到,获得积分10
1分钟前
彩色莞完成签到 ,获得积分10
1分钟前
2220完成签到 ,获得积分10
1分钟前
1分钟前
虚心傲丝完成签到,获得积分10
1分钟前
爆米花应助zhong采纳,获得10
1分钟前
黄12发布了新的文献求助10
1分钟前
Murphy发布了新的文献求助10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162246
求助须知:如何正确求助?哪些是违规求助? 2813263
关于积分的说明 7899489
捐赠科研通 2472504
什么是DOI,文献DOI怎么找? 1316446
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142