Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature

均方误差 数学 统计 平均绝对误差 公制(单位) 运营管理 经济
作者
Tianfeng Chai,Roland R. Draxler
出处
期刊:Geoscientific Model Development 卷期号:7 (3): 1247-1250 被引量:3093
标识
DOI:10.5194/gmd-7-1247-2014
摘要

Abstract. Both the root mean square error (RMSE) and the mean absolute error (MAE) are regularly employed in model evaluation studies. Willmott and Matsuura (2005) have suggested that the RMSE is not a good indicator of average model performance and might be a misleading indicator of average error, and thus the MAE would be a better metric for that purpose. While some concerns over using RMSE raised by Willmott and Matsuura (2005) and Willmott et al. (2009) are valid, the proposed avoidance of RMSE in favor of MAE is not the solution. Citing the aforementioned papers, many researchers chose MAE over RMSE to present their model evaluation statistics when presenting or adding the RMSE measures could be more beneficial. In this technical note, we demonstrate that the RMSE is not ambiguous in its meaning, contrary to what was claimed by Willmott et al. (2009). The RMSE is more appropriate to represent model performance than the MAE when the error distribution is expected to be Gaussian. In addition, we show that the RMSE satisfies the triangle inequality requirement for a distance metric, whereas Willmott et al. (2009) indicated that the sums-of-squares-based statistics do not satisfy this rule. In the end, we discussed some circumstances where using the RMSE will be more beneficial. However, we do not contend that the RMSE is superior over the MAE. Instead, a combination of metrics, including but certainly not limited to RMSEs and MAEs, are often required to assess model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyang999完成签到,获得积分10
1秒前
Jiayee发布了新的文献求助20
1秒前
zzz完成签到,获得积分20
1秒前
2秒前
2秒前
3秒前
3秒前
橙子呀~完成签到 ,获得积分10
4秒前
4秒前
喵喵完成签到 ,获得积分10
5秒前
kbj发布了新的文献求助10
6秒前
7秒前
李白发布了新的文献求助10
7秒前
fuje发布了新的文献求助10
7秒前
俏皮的银耳汤完成签到,获得积分10
10秒前
牵猫散步的鱼完成签到,获得积分10
12秒前
12秒前
惠耷发布了新的文献求助10
13秒前
wen发布了新的文献求助10
13秒前
13秒前
ding应助起风了采纳,获得10
17秒前
19秒前
惠耷完成签到,获得积分10
19秒前
19秒前
赵聚星发布了新的文献求助100
19秒前
Jasper应助愤怒的水壶采纳,获得10
20秒前
大饼完成签到,获得积分10
20秒前
24秒前
玩家发布了新的文献求助10
24秒前
yanna应助胡英宇采纳,获得10
27秒前
愤怒的水壶完成签到,获得积分10
27秒前
鲜于灵竹发布了新的文献求助10
28秒前
米莉森的锋刃完成签到,获得积分10
28秒前
Masaccy完成签到,获得积分10
29秒前
忧郁绣连应助airsh采纳,获得10
29秒前
30秒前
31秒前
31秒前
34秒前
老肖应助林盒采纳,获得10
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136744
求助须知:如何正确求助?哪些是违规求助? 2787779
关于积分的说明 7783154
捐赠科研通 2443843
什么是DOI,文献DOI怎么找? 1299466
科研通“疑难数据库(出版商)”最低求助积分说明 625457
版权声明 600954