In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window

化学 化学信息学 人工智能 朴素贝叶斯分类器 计算机科学 机器学习 模式识别(心理学) 试验装置 分类器(UML) 数据挖掘 支持向量机 生物信息学 药物发现 生物
作者
Alexios Koutsoukas,Robert Lowe,Yasaman KalantarMotamedi,Hamse Y. Mussa,Werner Klaffke,John B. O. Mitchell,Robert C. Glen,Andreas Bender
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:53 (8): 1957-1966 被引量:141
标识
DOI:10.1021/ci300435j
摘要

In this study, two probabilistic machine-learning algorithms were compared for in silico target prediction of bioactive molecules, namely the well-established Laplacian-modified Naïve Bayes classifier (NB) and the more recently introduced (to Cheminformatics) Parzen-Rosenblatt Window. Both classifiers were trained in conjunction with circular fingerprints on a large data set of bioactive compounds extracted from ChEMBL, covering 894 human protein targets with more than 155,000 ligand-protein pairs. This data set is also provided as a benchmark data set for future target prediction methods due to its size as well as the number of bioactivity classes it contains. In addition to evaluating the methods, different performance measures were explored. This is not as straightforward as in binary classification settings, due to the number of classes, the possibility of multiple class memberships, and the need to translate model scores into "yes/no" predictions for assessing model performance. Both algorithms achieved a recall of correct targets that exceeds 80% in the top 1% of predictions. Performance depends significantly on the underlying diversity and size of a given class of bioactive compounds, with small classes and low structural similarity affecting both algorithms to different degrees. When tested on an external test set extracted from WOMBAT covering more than 500 targets by excluding all compounds with Tanimoto similarity above 0.8 to compounds from the ChEMBL data set, the current methodologies achieved a recall of 63.3% and 66.6% among the top 1% for Naïve Bayes and Parzen-Rosenblatt Window, respectively. While those numbers seem to indicate lower performance, they are also more realistic for settings where protein targets need to be established for novel chemical substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
衡希完成签到,获得积分10
1秒前
谓易ing完成签到 ,获得积分10
2秒前
Mr.靠谱发布了新的文献求助10
2秒前
慕子哥发布了新的文献求助10
2秒前
鲁鲁完成签到,获得积分10
4秒前
王一正完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
7秒前
颖ying完成签到,获得积分10
7秒前
完美世界应助超级的红酒采纳,获得10
9秒前
9秒前
挞挞不要胖完成签到 ,获得积分10
10秒前
11秒前
11秒前
慕子哥完成签到,获得积分20
12秒前
13秒前
14秒前
doctor杨完成签到,获得积分10
15秒前
丽莫莫完成签到,获得积分10
15秒前
超帅连虎发布了新的文献求助10
16秒前
易楠发布了新的文献求助10
16秒前
海带发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
123发布了新的文献求助10
18秒前
玩命的书兰完成签到 ,获得积分10
20秒前
21秒前
RYAN发布了新的文献求助10
23秒前
淡写发布了新的文献求助10
24秒前
罂粟完成签到,获得积分10
25秒前
26秒前
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
桐桐应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421748
求助须知:如何正确求助?哪些是违规求助? 4536717
关于积分的说明 14154660
捐赠科研通 4453214
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411284