In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window

化学 化学信息学 人工智能 朴素贝叶斯分类器 计算机科学 机器学习 模式识别(心理学) 试验装置 分类器(UML) 数据挖掘 支持向量机 生物信息学 药物发现 生物
作者
Alexios Koutsoukas,Robert Lowe,Yasaman KalantarMotamedi,Hamse Y. Mussa,Werner Klaffke,John B. O. Mitchell,Robert C. Glen,Andreas Bender
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:53 (8): 1957-1966 被引量:141
标识
DOI:10.1021/ci300435j
摘要

In this study, two probabilistic machine-learning algorithms were compared for in silico target prediction of bioactive molecules, namely the well-established Laplacian-modified Naïve Bayes classifier (NB) and the more recently introduced (to Cheminformatics) Parzen-Rosenblatt Window. Both classifiers were trained in conjunction with circular fingerprints on a large data set of bioactive compounds extracted from ChEMBL, covering 894 human protein targets with more than 155,000 ligand-protein pairs. This data set is also provided as a benchmark data set for future target prediction methods due to its size as well as the number of bioactivity classes it contains. In addition to evaluating the methods, different performance measures were explored. This is not as straightforward as in binary classification settings, due to the number of classes, the possibility of multiple class memberships, and the need to translate model scores into "yes/no" predictions for assessing model performance. Both algorithms achieved a recall of correct targets that exceeds 80% in the top 1% of predictions. Performance depends significantly on the underlying diversity and size of a given class of bioactive compounds, with small classes and low structural similarity affecting both algorithms to different degrees. When tested on an external test set extracted from WOMBAT covering more than 500 targets by excluding all compounds with Tanimoto similarity above 0.8 to compounds from the ChEMBL data set, the current methodologies achieved a recall of 63.3% and 66.6% among the top 1% for Naïve Bayes and Parzen-Rosenblatt Window, respectively. While those numbers seem to indicate lower performance, they are also more realistic for settings where protein targets need to be established for novel chemical substances.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Amazing完成签到 ,获得积分10
刚刚
香蕉以菱完成签到,获得积分10
刚刚
兔兔酱发布了新的文献求助10
2秒前
再美完成签到,获得积分10
2秒前
stride21完成签到,获得积分10
2秒前
2秒前
de发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
华仔应助天行马采纳,获得10
4秒前
太叔文博完成签到,获得积分10
4秒前
小明完成签到,获得积分10
4秒前
清秀凡霜完成签到,获得积分10
5秒前
怡然的乘风完成签到,获得积分10
5秒前
春祭发布了新的文献求助10
6秒前
JamesPei应助Hmbb采纳,获得10
6秒前
云汐儿完成签到,获得积分10
6秒前
6秒前
天上白玉京完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
可靠幼旋完成签到,获得积分10
6秒前
RowanLuo完成签到,获得积分10
7秒前
7秒前
清脆圆子完成签到 ,获得积分10
7秒前
Stella应助鸿汉采纳,获得10
7秒前
DJY完成签到,获得积分10
7秒前
nczpf2010完成签到,获得积分10
7秒前
王钟萱完成签到,获得积分10
7秒前
心之所向完成签到 ,获得积分10
8秒前
li完成签到,获得积分10
8秒前
mm发布了新的文献求助10
9秒前
六六完成签到,获得积分20
9秒前
阿拉完成签到 ,获得积分10
9秒前
兔兔酱完成签到,获得积分10
9秒前
神经网络模型完成签到,获得积分10
10秒前
求助人员发布了新的文献求助10
10秒前
专注钢笔发布了新的文献求助10
10秒前
小猪完成签到,获得积分10
10秒前
111关闭了111文献求助
11秒前
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584934
求助须知:如何正确求助?哪些是违规求助? 4668775
关于积分的说明 14772496
捐赠科研通 4616501
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467626