亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Naïve Bayes and Parzen-Rosenblatt Window

化学 化学信息学 人工智能 朴素贝叶斯分类器 计算机科学 机器学习 模式识别(心理学) 试验装置 分类器(UML) 数据挖掘 支持向量机 生物信息学 药物发现 生物
作者
Alexios Koutsoukas,Robert Lowe,Yasaman KalantarMotamedi,Hamse Y. Mussa,Werner Klaffke,John B. O. Mitchell,Robert C. Glen,Andreas Bender
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:53 (8): 1957-1966 被引量:141
标识
DOI:10.1021/ci300435j
摘要

In this study, two probabilistic machine-learning algorithms were compared for in silico target prediction of bioactive molecules, namely the well-established Laplacian-modified Naïve Bayes classifier (NB) and the more recently introduced (to Cheminformatics) Parzen-Rosenblatt Window. Both classifiers were trained in conjunction with circular fingerprints on a large data set of bioactive compounds extracted from ChEMBL, covering 894 human protein targets with more than 155,000 ligand-protein pairs. This data set is also provided as a benchmark data set for future target prediction methods due to its size as well as the number of bioactivity classes it contains. In addition to evaluating the methods, different performance measures were explored. This is not as straightforward as in binary classification settings, due to the number of classes, the possibility of multiple class memberships, and the need to translate model scores into "yes/no" predictions for assessing model performance. Both algorithms achieved a recall of correct targets that exceeds 80% in the top 1% of predictions. Performance depends significantly on the underlying diversity and size of a given class of bioactive compounds, with small classes and low structural similarity affecting both algorithms to different degrees. When tested on an external test set extracted from WOMBAT covering more than 500 targets by excluding all compounds with Tanimoto similarity above 0.8 to compounds from the ChEMBL data set, the current methodologies achieved a recall of 63.3% and 66.6% among the top 1% for Naïve Bayes and Parzen-Rosenblatt Window, respectively. While those numbers seem to indicate lower performance, they are also more realistic for settings where protein targets need to be established for novel chemical substances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助科研通管家采纳,获得10
2秒前
Aira发布了新的文献求助10
2秒前
5秒前
李健应助Aira采纳,获得10
9秒前
18秒前
serein发布了新的文献求助10
24秒前
25秒前
健忘沛春发布了新的文献求助10
29秒前
xz完成签到 ,获得积分10
1分钟前
youngyang完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
刘快乐发布了新的文献求助10
1分钟前
1分钟前
江子川发布了新的文献求助10
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
2分钟前
帅气的藏鸟完成签到 ,获得积分10
2分钟前
非洲大象发布了新的文献求助50
2分钟前
慕青应助啊呜采纳,获得10
3分钟前
Amber完成签到 ,获得积分10
3分钟前
3分钟前
脑洞疼应助YUYUYU采纳,获得10
3分钟前
啊呜发布了新的文献求助10
3分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
寻道图强应助科研通管家采纳,获得30
4分钟前
打打应助顺利山柏采纳,获得10
4分钟前
zkwgly完成签到 ,获得积分10
4分钟前
Jenny完成签到,获得积分10
4分钟前
4分钟前
云雀完成签到,获得积分10
4分钟前
云雀发布了新的文献求助30
4分钟前
5分钟前
Aira发布了新的文献求助10
5分钟前
研友_ZbP41L完成签到 ,获得积分10
5分钟前
5分钟前
Steve完成签到 ,获得积分10
5分钟前
顺利山柏发布了新的文献求助10
5分钟前
寻道图强应助科研通管家采纳,获得30
6分钟前
6分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314