凝胶
物理
简单(哲学)
劈形算符
价(化学)
Atom(片上系统)
原子物理学
局部密度近似
能量(信号处理)
电子
密度泛函理论
量子力学
认识论
计算机科学
哲学
嵌入式系统
欧米茄
作者
John P. Perdew,Yue Wang
出处
期刊:Physical review
日期:1986-06-15
卷期号:33 (12): 8800-8802
被引量:4006
标识
DOI:10.1103/physrevb.33.8800
摘要
The electronic exchange energy as a functional of the density may be approximated as ${E}_{x}[n]={A}_{x}\ensuremath{\int}{d}^{3}r{n}^{\frac{4}{3}}F(s)$, where $s=\frac{|\ensuremath{\nabla}n|}{2{k}_{F}n}$, ${k}_{F}={(3{\ensuremath{\pi}}^{2}n)}^{\frac{1}{3}}$, and $F(s)={(1+1.296{s}^{2}+14{s}^{4}+0.2{s}^{6})}^{\frac{1}{15}}$. The basis for this approximation is the gradient expansion of the exchange hole, with real-space cutoffs chosen to guarantee that the hole is negative everywhere and represents a deficit of one electron. Unlike the previously publsihed version of it, this functional is simple enough to be applied routinely in self-consistent calculations for atoms, molecules, and solids. Calculated exchange energies for atoms fall within 1% of Hartree-Fock values. Significant improvements over other simple functionals are also found in the exchange contributions to the valence-shell removal energy of an atom and to the surface energy of jellium within the infinite barrier model.
科研通智能强力驱动
Strongly Powered by AbleSci AI