计算机科学
建筑
卷积神经网络
直觉
人工智能
深度学习
网络体系结构
背景(考古学)
人工神经网络
比例(比率)
机器学习
模式识别(心理学)
计算机网络
物理
认识论
哲学
艺术
古生物学
视觉艺术
生物
量子力学
作者
Christian Szegedy,Wei Liu,Yangqing Jia,Pierre Sermanet,Scott Reed,Dragomir Anguelov,Dumitru Erhan,Vincent Vanhoucke,Andrew Rabinovich
出处
期刊:Computer Vision and Pattern Recognition
日期:2015-06-01
卷期号:: 1-9
被引量:41915
标识
DOI:10.1109/cvpr.2015.7298594
摘要
We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI