材料科学
表面能
复合材料
接触角
造型(装饰)
溅射沉积
离子镀
溅射
锡
涂层
表面粗糙度
腔磁控管
冶金
薄膜
纳米技术
作者
Chen-Cheng Sun,Shih-Chin Lee,Shyue-Bin Dai,Shein-Long Tien,Chung-Chih Chang,Yaw‐Shyan Fu
标识
DOI:10.1016/j.apsusc.2006.09.008
摘要
Semiconductor IC packaging molding dies require wear resistance, corrosion resistance and non-sticking (with a low surface free energy). The molding releasing capability and performance are directly associated with the surface free energy between the coating and product material. The serious sticking problem reduces productivity and reliability. Depositing TiN, TiMoS, ZrN, CrC, CrN, NiCr, NiCrN, CrTiAlN and CrNiTiAlN coatings using closed field unbalanced magnetron sputter ion plating, and characterizing their surface free energy are the main object in developing a non-stick coating system for semiconductor IC molding tools. The contact angle of water, diiodomethane and ethylene glycol on the coated surfaces were measured at temperature in 20 °C using a Dataphysics OCA-20 contact angle analyzer. The surface free energy of the coatings and their components (dispersion and polar) were calculated using the Owens–Wendt geometric mean approach. The surface roughness was investigated by atomic force microscopy (AFM). The adhesion force of these coatings was measured using direct tensile pull-off test apparatus. The experimental results showed that NiCrN, CrN and NiCrTiAlN coatings outperformed TiN, ZrN, NiCr, CiTiAlN, CrC and TiMoS coatings in terms of non-sticking, and thus have the potential as working layers for injection molding industrial equipment, especially in semiconductor IC packaging molding applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI