Concurrent optimal allocation of distributed manufacturing resources using extended Teaching-Learning-Based Optimization

计算机科学 分布式制造 数学优化 资源配置 遗传算法 帕累托最优 和声搜索 启发式 粒子群优化 选择(遗传算法) 帕累托原理 分布式计算 多目标优化 工程类 算法 人工智能 制造工程 机器学习 数学 计算机网络
作者
Wenyu Zhang,Shuai Zhang,Shanshan Guo,Yushu Yang,Yong Chen
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:55 (3): 718-735 被引量:41
标识
DOI:10.1080/00207543.2016.1203078
摘要

The optimal allocation of distributed manufacturing resources is a challenging task for supply chain deployment in the current competitive and dynamic manufacturing environments, and is characterised by multiple objectives including time, cost, quality and risk that require simultaneous considerations. This paper presents an improved variant of the Teaching-Learning-Based Optimisation (TLBO) algorithm to concurrently evaluate, select and sequence the candidate distributed manufacturing resources allocated to subtasks comprising the supply chain, while dealing with the trade-offs among multiple objectives. Several algorithm-specific improvements are suggested to extend the standard form of TLBO algorithm, which is only well suited for the one-dimensional continuous numerical optimisation problem well, to solve the two-dimensional (i.e. both resource selection and resource sequencing) discrete combinatorial optimisation problem for concurrent allocation of distributed manufacturing resources through a focused trade-off within the constrained set of Pareto optimal solutions. The experimental simulation results showed that the proposed approach can obtain a better manufacturing resource allocation plan than the current standard meta-heuristic algorithms such as Genetic Algorithm, Particle Swarm Optimisation and Harmony Search. Moreover, a near optimal resource allocation plan can be obtained with linear algorithmic complexity as the problem scale increases greatly.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wllllll发布了新的文献求助10
1秒前
mm发布了新的文献求助10
1秒前
111完成签到 ,获得积分10
2秒前
2秒前
酷波er应助xmy采纳,获得10
2秒前
希望天下0贩的0应助远道采纳,获得10
3秒前
LHNini完成签到,获得积分20
3秒前
3秒前
4秒前
4秒前
6秒前
6秒前
wuxb完成签到,获得积分10
7秒前
aisanye发布了新的文献求助10
7秒前
科目三应助韦灵珊采纳,获得10
8秒前
充电宝应助wxy采纳,获得10
8秒前
CipherSage应助wxy采纳,获得10
9秒前
wanci应助wxy采纳,获得10
9秒前
CodeCraft应助wxy采纳,获得10
9秒前
9秒前
研友_Zr26RZ发布了新的文献求助10
10秒前
10秒前
缘起缘灭发布了新的文献求助10
10秒前
小舒发布了新的文献求助20
10秒前
一一一完成签到,获得积分10
10秒前
科研通AI5应助许诺采纳,获得10
11秒前
Minve发布了新的文献求助10
11秒前
jiajia完成签到 ,获得积分20
13秒前
zlz关注了科研通微信公众号
13秒前
迷路的文涛完成签到,获得积分10
14秒前
15秒前
小蘑菇应助现实的绿凝采纳,获得10
15秒前
18秒前
科研通AI5应助江二毛采纳,获得10
18秒前
19秒前
19秒前
19秒前
研友_Zr26RZ完成签到,获得积分10
19秒前
GK发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Homolytic deamination of amino-alcohols 1000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3728438
求助须知:如何正确求助?哪些是违规求助? 3273449
关于积分的说明 9981938
捐赠科研通 2988880
什么是DOI,文献DOI怎么找? 1639856
邀请新用户注册赠送积分活动 779028
科研通“疑难数据库(出版商)”最低求助积分说明 747866