Experimental design and statistical analysis for three-drug combination studies

药品 成对比较 计算机科学 样本量测定 医学 数学 统计 药理学 人工智能
作者
Hong‐Bin Fang,Xuerong Chen,Xin‐Yan Pei,Steven Grant,Ming Tan
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:26 (3): 1261-1280 被引量:25
标识
DOI:10.1177/0962280215574320
摘要

Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose–response shapes of individual constituent drugs. Thus, different classes of drugs of different dose–response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose–response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose–response surface formed by dose ranges of three drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助司空三问采纳,获得10
1秒前
Orange应助嗨哈尼采纳,获得10
1秒前
短短长又长完成签到 ,获得积分10
1秒前
zZ完成签到,获得积分10
2秒前
2秒前
2秒前
邓鹏煊发布了新的文献求助10
3秒前
糖不太甜发布了新的文献求助10
3秒前
4秒前
溪鱼完成签到,获得积分10
4秒前
doolp完成签到,获得积分10
6秒前
忐忑的猪完成签到,获得积分10
7秒前
祖琦完成签到,获得积分10
7秒前
荼柒完成签到,获得积分10
8秒前
领导范儿应助糖不太甜采纳,获得10
9秒前
11秒前
11秒前
12秒前
13秒前
转眼间完成签到,获得积分10
14秒前
ws发布了新的文献求助10
15秒前
大模型应助外向的百川采纳,获得10
16秒前
顺心孤云完成签到,获得积分10
16秒前
好好好发布了新的文献求助10
16秒前
16秒前
橙子发布了新的文献求助10
16秒前
奶盐牙牙乐完成签到 ,获得积分10
16秒前
lsp发布了新的文献求助10
16秒前
情怀应助科研小白采纳,获得10
17秒前
荼柒完成签到,获得积分10
17秒前
FashionBoy应助旺仔Mario采纳,获得10
18秒前
orixero应助证基采纳,获得10
18秒前
18秒前
李丽冰完成签到,获得积分10
19秒前
年轻的熊猫完成签到,获得积分20
19秒前
qian发布了新的文献求助10
19秒前
高兴的彩虹完成签到,获得积分10
19秒前
20秒前
桃桃发布了新的文献求助30
20秒前
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053