Experimental design and statistical analysis for three-drug combination studies

药品 成对比较 计算机科学 样本量测定 医学 数学 统计 药理学 人工智能
作者
Hong‐Bin Fang,Xuerong Chen,Xin‐Yan Pei,Steven Grant,Ming Tan
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:26 (3): 1261-1280 被引量:25
标识
DOI:10.1177/0962280215574320
摘要

Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose–response shapes of individual constituent drugs. Thus, different classes of drugs of different dose–response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose–response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose–response surface formed by dose ranges of three drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助如是之人采纳,获得10
刚刚
搜集达人应助如是之人采纳,获得10
刚刚
刚刚
彭于晏应助如是之人采纳,获得10
刚刚
丘比特应助如是之人采纳,获得10
刚刚
Jared应助如是之人采纳,获得10
刚刚
科研通AI6应助如是之人采纳,获得10
刚刚
可爱的函函应助如是之人采纳,获得10
刚刚
脑洞疼应助如是之人采纳,获得10
刚刚
exile516发布了新的文献求助10
刚刚
liuhe发布了新的文献求助10
刚刚
刚刚
zg发布了新的文献求助10
1秒前
1秒前
甜味白开水完成签到,获得积分10
1秒前
任大师兄完成签到,获得积分10
2秒前
123完成签到,获得积分10
3秒前
3秒前
3秒前
六六六完成签到,获得积分20
3秒前
张zhang发布了新的文献求助10
4秒前
lishanshan发布了新的文献求助10
4秒前
4秒前
4秒前
shumin发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
天天快乐应助WANG采纳,获得10
5秒前
天天快乐应助梦将军采纳,获得30
5秒前
zzb完成签到,获得积分10
6秒前
6秒前
闪闪航空发布了新的文献求助10
6秒前
科研通AI6应助邢哥哥采纳,获得10
6秒前
威武道罡发布了新的文献求助10
7秒前
聂紫寒完成签到,获得积分10
7秒前
大模型应助425711204采纳,获得10
7秒前
小六九发布了新的文献求助10
7秒前
大轩完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552039
求助须知:如何正确求助?哪些是违规求助? 4636877
关于积分的说明 14646248
捐赠科研通 4578705
什么是DOI,文献DOI怎么找? 2511074
邀请新用户注册赠送积分活动 1486286
关于科研通互助平台的介绍 1457502