Experimental design and statistical analysis for three-drug combination studies

药品 成对比较 计算机科学 样本量测定 医学 数学 统计 药理学 人工智能
作者
Hong‐Bin Fang,Xuerong Chen,Xin‐Yan Pei,Steven Grant,Ming Tan
出处
期刊:Statistical Methods in Medical Research [SAGE Publishing]
卷期号:26 (3): 1261-1280 被引量:25
标识
DOI:10.1177/0962280215574320
摘要

Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose–response shapes of individual constituent drugs. Thus, different classes of drugs of different dose–response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose–response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose–response surface formed by dose ranges of three drugs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xieyusen发布了新的文献求助10
1秒前
乐乐应助hajimi123采纳,获得10
1秒前
研友_enPaaZ发布了新的文献求助150
1秒前
酷波er应助李宫俊采纳,获得10
2秒前
桐桐应助cowboy123采纳,获得10
4秒前
Fan发布了新的文献求助10
4秒前
Jasper应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
Jasper应助丁丁采纳,获得10
5秒前
5秒前
852应助LCW采纳,获得10
5秒前
孤独的怜阳完成签到,获得积分20
6秒前
啤酒人完成签到 ,获得积分10
8秒前
9秒前
SYLH应助虚心的静枫采纳,获得20
9秒前
义气聪展完成签到 ,获得积分10
12秒前
ommphey发布了新的文献求助100
13秒前
leranlily完成签到,获得积分10
13秒前
MANGMANG发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
Jasper应助Yuanyuan采纳,获得10
15秒前
李物发布了新的文献求助20
16秒前
quhayley应助樊珩采纳,获得10
19秒前
zhi发布了新的文献求助10
19秒前
Nikola完成签到 ,获得积分10
19秒前
20秒前
英吉利25发布了新的文献求助10
20秒前
23秒前
24秒前
N型半导体发布了新的文献求助10
25秒前
小二郎应助wwpedd采纳,获得30
25秒前
QIU关闭了QIU文献求助
25秒前
回家睡觉发布了新的文献求助30
26秒前
凶狠的惜海完成签到,获得积分20
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303