清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Experimental design and statistical analysis for three-drug combination studies

药品 成对比较 计算机科学 样本量测定 医学 数学 统计 药理学 人工智能
作者
Hong‐Bin Fang,Xuerong Chen,Xin‐Yan Pei,Steven Grant,Ming Tan
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:26 (3): 1261-1280 被引量:25
标识
DOI:10.1177/0962280215574320
摘要

Drug combination is a critically important therapeutic approach for complex diseases such as cancer and HIV due to its potential for efficacy at lower, less toxic doses and the need to move new therapies rapidly into clinical trials. One of the key issues is to identify which combinations are additive, synergistic, or antagonistic. While the value of multidrug combinations has been well recognized in the cancer research community, to our best knowledge, all existing experimental studies rely on fixing the dose of one drug to reduce the dimensionality, e.g. looking at pairwise two-drug combinations, a suboptimal design. Hence, there is an urgent need to develop experimental design and analysis methods for studying multidrug combinations directly. Because the complexity of the problem increases exponentially with the number of constituent drugs, there has been little progress in the development of methods for the design and analysis of high-dimensional drug combinations. In fact, contrary to common mathematical reasoning, the case of three-drug combinations is fundamentally more difficult than two-drug combinations. Apparently, finding doses of the combination, number of combinations, and replicates needed to detect departures from additivity depends on dose–response shapes of individual constituent drugs. Thus, different classes of drugs of different dose–response shapes need to be treated as a separate case. Our application and case studies develop dose finding and sample size method for detecting departures from additivity with several common (linear and log-linear) classes of single dose–response curves. Furthermore, utilizing the geometric features of the interaction index, we propose a nonparametric model to estimate the interaction index surface by B-spine approximation and derive its asymptotic properties. Utilizing the method, we designed and analyzed a combination study of three anticancer drugs, PD184, HA14-1, and CEP3891 inhibiting myeloma H929 cell line. To our best knowledge, this is the first ever three drug combinations study performed based on the original 4D dose–response surface formed by dose ranges of three drugs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术霸王完成签到,获得积分10
13秒前
22秒前
安蓝发布了新的文献求助10
23秒前
不安青牛应助安蓝采纳,获得10
31秒前
小二郎应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
完美世界应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
修fei完成签到 ,获得积分10
49秒前
Blaseaka完成签到 ,获得积分0
1分钟前
1437594843完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
ontheway发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
2分钟前
Cara发布了新的文献求助10
2分钟前
领导范儿应助Cara采纳,获得10
2分钟前
jeffgong完成签到,获得积分10
3分钟前
3分钟前
小核桃完成签到 ,获得积分10
4分钟前
小珂完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
gwbk完成签到,获得积分10
5分钟前
6分钟前
Wang完成签到 ,获得积分20
6分钟前
文献属于所有科研人完成签到 ,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
一盏壶完成签到,获得积分10
7分钟前
Miracle完成签到,获得积分10
7分钟前
雪山飞龙发布了新的文献求助10
7分钟前
雪山飞龙发布了新的文献求助10
7分钟前
雪山飞龙完成签到,获得积分10
7分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
7分钟前
freebird完成签到,获得积分10
8分钟前
TT完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Strength and Conditioning in Sports From Science to Practice By Michael Stone, Timothy Suchomel, W. Hornsby, John Wagle, Aaron Cunanan Copyright 2022 600
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617147
求助须知:如何正确求助?哪些是违规求助? 4701498
关于积分的说明 14913769
捐赠科研通 4750314
什么是DOI,文献DOI怎么找? 2549337
邀请新用户注册赠送积分活动 1512350
关于科研通互助平台的介绍 1474091