Parcellating cortical functional networks in individuals

神经科学 功能磁共振成像 功能连接 大脑定位 静息状态功能磁共振成像 功能成像 心理学 神经影像学 计算机科学 职能组织 人口 人工智能 医学 环境卫生
作者
Danhong Wang,Randy L. Buckner,Michael Fox,Daphne J. Holt,Avram J. Holmes,Sophia Stoecklein,Georg Langs,Ruiqi Pan,Tianyi Qian,Kuncheng Li,Justin T. Baker,Steven M. Stufflebeam,Kai Wang,Xiaomin Wang,Bo Hong,Hesheng Liu
出处
期刊:Nature Neuroscience [Springer Nature]
卷期号:18 (12): 1853-1860 被引量:547
标识
DOI:10.1038/nn.4164
摘要

A cortical parcellation technique accurately maps functional organization in individual brains. Functional networks mapped by this approach are highly reproducible and effectively capture individual variability. The algorithm performs well across different populations and data types and is validated by invasive cortical stimulation mapping in surgical patients. The capacity to identify the unique functional architecture of an individual's brain is a crucial step toward personalized medicine and understanding the neural basis of variation in human cognition and behavior. Here we developed a cortical parcellation approach to accurately map functional organization at the individual level using resting-state functional magnetic resonance imaging (fMRI). A population-based functional atlas and a map of inter-individual variability were employed to guide the iterative search for functional networks in individual subjects. Functional networks mapped by this approach were highly reproducible within subjects and effectively captured the variability across subjects, including individual differences in brain lateralization. The algorithm performed well across different subject populations and data types, including task fMRI data. The approach was then validated by invasive cortical stimulation mapping in surgical patients, suggesting potential for use in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田雨弘完成签到,获得积分10
刚刚
汉堡包应助littleblack采纳,获得10
刚刚
荷月初六发布了新的文献求助10
1秒前
math-naive完成签到,获得积分10
1秒前
black云发布了新的文献求助10
2秒前
2秒前
3秒前
Albert发布了新的文献求助10
3秒前
叫我富婆儿完成签到,获得积分10
3秒前
Ava应助舒心的如柏采纳,获得10
4秒前
4秒前
辛普森完成签到,获得积分10
4秒前
顺顺顺顺完成签到 ,获得积分10
4秒前
爱吃蔬菜完成签到,获得积分10
5秒前
秋秋儿完成签到,获得积分10
5秒前
wy完成签到,获得积分10
6秒前
888完成签到,获得积分10
6秒前
6秒前
火花发布了新的文献求助10
7秒前
Sharif318完成签到,获得积分10
7秒前
充电宝应助TiAmo采纳,获得10
8秒前
Emper发布了新的文献求助10
8秒前
思源应助踟蹰采纳,获得10
8秒前
8秒前
9秒前
Kurenai发布了新的文献求助100
9秒前
三岁完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
yang完成签到,获得积分10
9秒前
杰杰发布了新的文献求助20
10秒前
科研通AI6应助222采纳,获得10
10秒前
wsj发布了新的文献求助10
11秒前
st完成签到,获得积分10
11秒前
活力的含桃完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
zhq发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468825
求助须知:如何正确求助?哪些是违规求助? 4572157
关于积分的说明 14333943
捐赠科研通 4498964
什么是DOI,文献DOI怎么找? 2464789
邀请新用户注册赠送积分活动 1453376
关于科研通互助平台的介绍 1427939