The role of inertial cavitation in acoustic droplet vaporization

空化 材料科学 表面张力 汽化 过热 粘度 气泡 机械 热力学 复合材料 物理
作者
Mario L. Fabiilli,Kevin J. Haworth,Nikta Fakhri,Oliver D. Kripfgans,Paul L. Carson,J. Brian Fowlkes
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:56 (5): 1006-1017 被引量:205
标识
DOI:10.1109/tuffc.2009.1132
摘要

The vaporization of a superheated droplet emulsion into gas bubbles using ultrasound-termed acoustic droplet vaporization (ADV)-has potential therapeutic applications in embolotherapy and drug delivery. The optimization of ADV for therapeutic applications can be enhanced by understanding the physical mechanisms underlying ADV, which are currently not clearly elucidated. Acoustic cavitation is one possible mechanism. This paper investigates the relationship between ADV and inertial cavitation (IC) thresholds (measured as peak rarefactional pressures) by studying parameters that are known to influence the IC threshold. These parameters include bulk fluid properties such as gas saturation, temperature, viscosity, and surface tension; droplet parameters such as degree of superheat, surfactant type, and size; and acoustic properties such as pulse repetition frequency and pulse width. In all cases the ADV threshold occurred at a lower rarefactional pressure than the IC threshold, indicating that the phase transition occurs before IC events. The viscosity and temperature of the bulk fluid are shown to influence both thresholds directly and inversely, respectively. An inverse trend is observed between threshold and diameter for droplets in the 1 to 2.5 µm range. Based on a choice of experimental parameters, it is possible to achieve ADV with or without IC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
三千世界完成签到,获得积分10
刚刚
刚刚
愉快的访旋完成签到,获得积分10
1秒前
Alpha完成签到,获得积分10
2秒前
大大发布了新的文献求助30
2秒前
翠翠发布了新的文献求助10
3秒前
半山发布了新的文献求助10
4秒前
4秒前
天天快乐应助CO2采纳,获得10
4秒前
隐形曼青应助junzilan采纳,获得10
5秒前
Dksido发布了新的文献求助10
5秒前
6秒前
思源应助卓哥采纳,获得10
6秒前
mysci完成签到,获得积分10
9秒前
10秒前
Quzhengkai发布了新的文献求助10
11秒前
11秒前
12秒前
落寞晓灵完成签到,获得积分10
12秒前
ORAzzz应助翠翠采纳,获得20
13秒前
zoe完成签到,获得积分10
13秒前
习习应助学术小白采纳,获得10
13秒前
14秒前
15秒前
tianny关注了科研通微信公众号
16秒前
16秒前
CO2发布了新的文献求助10
16秒前
桐桐应助zhangscience采纳,获得10
17秒前
求助发布了新的文献求助10
18秒前
buno应助zoe采纳,获得10
19秒前
junzilan发布了新的文献求助10
19秒前
19秒前
细品岁月完成签到 ,获得积分10
19秒前
细心书蕾完成签到 ,获得积分10
20秒前
无花果应助l11x29采纳,获得10
22秒前
22秒前
老詹头发布了新的文献求助10
22秒前
思源应助叫滚滚采纳,获得10
23秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808