弹道
过程(计算)
趋同(经济学)
机器人
运动(物理)
迭代学习控制
控制理论(社会学)
方案(数学)
计算机科学
执行机构
人工智能
控制工程
模拟
工程类
数学
控制(管理)
物理
操作系统
数学分析
经济
经济增长
天文
作者
S. Arimoto,Sadao Kawamura,Fumio Miyazaki
出处
期刊:Journal of Robotic Systems
[Wiley]
日期:1984-06-01
卷期号:1 (2): 123-140
被引量:3260
标识
DOI:10.1002/rob.4620010203
摘要
Abstract This article proposes a betterment process for the operation of a mechanical robot in a sense that it betters the next operation of a robot by using the previous operation's data. The process has an iterative learning structure such that the ( k + 1)th input to joint actuators consists of the k th input plus an error increment composed of the derivative difference between the k th motion trajectory and the given desired motion trajectory. The convergence of the process to the desired motion trajectory is assured under some reasonable conditions. Numerical results by computer simulation are presented to show the effectiveness of the proposed learning scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI