Synthetic vs. Real Driving Cycles: A Comparison of Electric Vehicle Battery Degradation

淡出 容量损失 电池(电) 降级(电信) 电动汽车 汽车工程 计算机科学 锂(药物) 泄流深度 锂离子电池 依赖关系(UML) 内阻 环境科学 材料科学 可靠性工程 模拟 功率(物理) 工程类 电信 热力学 人工智能 内分泌学 物理 操作系统 医学
作者
George Baure,Matthieu Dubarry
出处
期刊:Batteries [Multidisciplinary Digital Publishing Institute]
卷期号:5 (2): 42-42 被引量:52
标识
DOI:10.3390/batteries5020042
摘要

Automobile dependency and the inexorable proliferation of electric vehicles (EVs) compels accurate predictions of cycle life across multiple usage conditions and for multiple lithium-ion battery systems. Synthetic driving cycles have been essential in accumulating data on EV battery lifetimes. However, since battery deterioration is path-dependent, the representability of synthetic cycles must be questioned. Hence, this work compared three different synthetic driving cycles to real driving data in terms of mimicking actual EV battery degradation. It was found that the average current and charge capacity during discharge were important parameters in determining the appropriate synthetic profile, and traffic conditions have a significant impact on cell lifetimes. In addition, a stage of accelerated capacity fade was observed and shown to be induced by an increased loss of lithium inventory (LLI) resulting from irreversible Li plating. New metrics, the ratio of the loss of active material at the negative electrode (LAMNE) to the LLI and the plating threshold, were proposed as possible predictors for a stage of accelerated degradation. The results presented here demonstrated tracking properties, such as capacity loss and resistance increase, were insufficient in predicting cell lifetimes, supporting the adoption of metrics based on the analysis of degradation modes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助苒ran采纳,获得10
刚刚
刚刚
静默向上发布了新的文献求助10
1秒前
2秒前
2秒前
小凉发布了新的文献求助10
3秒前
4秒前
怕黑的静蕾应助芭娜55采纳,获得10
5秒前
smile发布了新的文献求助30
5秒前
6秒前
怕黑的静蕾应助树袋采纳,获得10
6秒前
风趣小蜜蜂完成签到,获得积分10
6秒前
momo发布了新的文献求助10
7秒前
huiyuan完成签到,获得积分10
8秒前
Orange应助smile采纳,获得30
9秒前
9秒前
七熵完成签到 ,获得积分0
10秒前
10秒前
11秒前
12秒前
GQL发布了新的文献求助10
12秒前
飘逸小懒猪应助hg采纳,获得10
12秒前
13秒前
13秒前
Akinmide完成签到 ,获得积分10
13秒前
静默向上完成签到,获得积分10
14秒前
FDY发布了新的文献求助10
14秒前
15秒前
15秒前
小唐完成签到,获得积分10
15秒前
16秒前
zhang完成签到,获得积分10
16秒前
17秒前
Lin发布了新的文献求助10
18秒前
19秒前
aaaaaa发布了新的文献求助10
19秒前
19秒前
19秒前
粉扑扑的东云完成签到,获得积分10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420