Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network

贝叶斯网络 一致性(知识库) 德尔菲法 弹性(材料科学) 过程(计算) 计算机科学 工程类 运输工程 运筹学 人工智能 热力学 操作系统 物理
作者
Jiansong Wu,Zhuqiang Hu,Jinyue Chen,Zheng Li
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:10 (10): 3810-3810 被引量:37
标识
DOI:10.3390/su10103810
摘要

Subway station fires often have serious consequences because of the high density of people and limited number of exits in a relatively enclosed space. In this study, a comprehensive model based on Bayesian network (BN) and the Delphi method is established for the rapid and dynamic assessment of the fire evolution process, and consequences, in underground subway stations. Based on the case studies of typical subway station fire accidents, 28 BN nodes are proposed to represent the evolution process of subway station fires, from causes to consequences. Based on expert knowledge and consistency processing by the Delphi method, the conditional probabilities of child BN nodes are determined. The BN model can quantitatively evaluate the factors influencing fire causes, fire proof/intervention measures, and fire consequences. The results show that the framework, combined with Bayesian network and the Delphi method, is a reliable tool for dynamic assessment of subway station fires. This study could offer insights to a more realistic analysis for emergency decision-making on fire disaster reduction, since the proposed approach could take into account the conditional dependency in the fire propagation process and incorporate fire proof/intervention measures, which is helpful for resilience and sustainability promotion of underground facilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助hh采纳,获得10
1秒前
1秒前
3秒前
小眼儿发布了新的文献求助10
3秒前
milly完成签到,获得积分20
3秒前
鲜艳的八宝粥完成签到,获得积分10
6秒前
肥亮发布了新的文献求助10
6秒前
zxw完成签到,获得积分20
6秒前
展希希完成签到,获得积分20
7秒前
7秒前
ZhangR完成签到,获得积分10
9秒前
Lucas应助拔丝香芋采纳,获得10
9秒前
fsky发布了新的文献求助10
9秒前
Marcus完成签到,获得积分10
10秒前
星辰大海应助种桃老总采纳,获得10
10秒前
DHY完成签到,获得积分10
10秒前
11秒前
yar应助小李先绅采纳,获得10
11秒前
123完成签到,获得积分10
12秒前
12秒前
ailemonmint发布了新的文献求助10
13秒前
crown发布了新的文献求助10
13秒前
CipherSage应助懦弱的含芙采纳,获得10
13秒前
13秒前
Wecple完成签到 ,获得积分10
14秒前
体能行者完成签到,获得积分10
14秒前
结实彤完成签到 ,获得积分10
14秒前
16秒前
学术大亨发布了新的文献求助10
17秒前
老板来杯冷咖啡完成签到,获得积分10
17秒前
18秒前
潘宋发布了新的文献求助10
18秒前
19秒前
slim发布了新的文献求助10
21秒前
feng_yihan完成签到 ,获得积分10
21秒前
共享精神应助小眼儿采纳,获得10
23秒前
hh发布了新的文献求助10
24秒前
Kvolu29发布了新的文献求助10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432