Risk Assessment of Underground Subway Stations to Fire Disasters Using Bayesian Network

贝叶斯网络 一致性(知识库) 德尔菲法 弹性(材料科学) 过程(计算) 计算机科学 工程类 运输工程 运筹学 人工智能 热力学 操作系统 物理
作者
Jiansong Wu,Zhuqiang Hu,Jinyue Chen,Zheng Li
出处
期刊:Sustainability [MDPI AG]
卷期号:10 (10): 3810-3810 被引量:36
标识
DOI:10.3390/su10103810
摘要

Subway station fires often have serious consequences because of the high density of people and limited number of exits in a relatively enclosed space. In this study, a comprehensive model based on Bayesian network (BN) and the Delphi method is established for the rapid and dynamic assessment of the fire evolution process, and consequences, in underground subway stations. Based on the case studies of typical subway station fire accidents, 28 BN nodes are proposed to represent the evolution process of subway station fires, from causes to consequences. Based on expert knowledge and consistency processing by the Delphi method, the conditional probabilities of child BN nodes are determined. The BN model can quantitatively evaluate the factors influencing fire causes, fire proof/intervention measures, and fire consequences. The results show that the framework, combined with Bayesian network and the Delphi method, is a reliable tool for dynamic assessment of subway station fires. This study could offer insights to a more realistic analysis for emergency decision-making on fire disaster reduction, since the proposed approach could take into account the conditional dependency in the fire propagation process and incorporate fire proof/intervention measures, which is helpful for resilience and sustainability promotion of underground facilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
ella发布了新的文献求助10
3秒前
3秒前
4秒前
lifanbloom应助JAYZHANG采纳,获得10
4秒前
6秒前
TT发布了新的文献求助10
6秒前
小姚姚完成签到,获得积分10
7秒前
theThreeMagi完成签到,获得积分10
8秒前
领导范儿应助清爽灰狼采纳,获得10
8秒前
哈哈哈发布了新的文献求助10
8秒前
NYM完成签到 ,获得积分10
9秒前
TANG完成签到 ,获得积分10
10秒前
10秒前
遇见胡桃夹子完成签到,获得积分10
11秒前
13秒前
momo完成签到,获得积分10
14秒前
14秒前
黑鲨完成签到 ,获得积分10
14秒前
15秒前
TomasLiu完成签到,获得积分10
16秒前
yuanshengyouji完成签到,获得积分20
16秒前
我的miemie发布了新的文献求助20
16秒前
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
曹沛岚发布了新的文献求助10
18秒前
XXX发布了新的文献求助10
19秒前
念yft发布了新的文献求助10
19秒前
20秒前
ding应助萌神采纳,获得10
20秒前
打打应助苏钰采纳,获得10
20秒前
李健应助33333采纳,获得10
21秒前
情怀应助山月采纳,获得30
21秒前
超级白昼发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148173
求助须知:如何正确求助?哪些是违规求助? 2799264
关于积分的说明 7834331
捐赠科研通 2456531
什么是DOI,文献DOI怎么找? 1307282
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655