Pre-stack seismic inversion using SeisInv-ResNet

反演(地质) 地质学 地震学 石油勘探 叠前 方位角 计算机科学 石油 几何学 数学 构造学 古生物学
作者
Jiameng Du,Junzhou Liu,Guangzhi Zhang,Lei Han,Ning Li
标识
DOI:10.1190/segam2019-3215750.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Pre-stack seismic inversion using SeisInv-ResNetAuthors: Jiameng DuJunzhou LiuGuangzhi ZhangLei HanNing LiJiameng DuChina University of Petroleum (East China)Search for more papers by this author, Junzhou LiuSinopec Research InstituteSearch for more papers by this author, Guangzhi ZhangChina University of Petroleum (East China)Search for more papers by this author, Lei HanSinopec Research InstituteSearch for more papers by this author, and Ning LiChina Petroleum Logging CO.LTD.Search for more papers by this authorhttps://doi.org/10.1190/segam2019-3215750.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractDeep learning has a good performance in feature extraction and nonlinear fitting. In recent years, there has been more and more researchers applying deep learning to geophysics. In this work, we build a Resnet for pre-stack seismic inversion for azimuthal anisotropic medium, from which we obtain the P-wave impedance, S-wave impedance and rock physics parameters of fracture model. We use the SeisInv-ResNet to calculate the P-wave impedance, S-wave impedance and Schoenberg fracture rock physics parameters ΔN, ΔT. Comparing model value with inversion result, the work illustrates the feasibility of SeisInv-ResNet for prestack seismic inversion. The less the underground structure of work area varies, the less training data the network needs. Besides, we use data from oil field for SeisInv-ResNet inversion to train the network and get a good result. The application of ResNet has a profound meaning in seismic inversion.Presentation Date: Tuesday, September 17, 2019Session Start Time: 1:50 PMPresentation Time: 3:05 PMLocation: 221DPresentation Type: OralKeywords: machine learning, prestack, inversion, azimuth, HTIPermalink: https://doi.org/10.1190/segam2019-3215750.1FiguresReferencesRelatedDetailsCited byPrestack seismic inversion for elastic parameters using model-data-driven generative adversarial networksShuai Sun, Luanxiao Zhao, Huaizhen Chen, Zhiliang He, and Jianhua Geng20 February 2023 | GEOPHYSICS, Vol. 88, No. 2Multichannel seismic impedance inversion based on Attention U-Net27 February 2023 | Frontiers in Earth Science, Vol. 11Intelligent AVA Inversion Using a Convolution Neural Network Trained with Pseudo-Well Datasets30 January 2023 | Surveys in Geophysics, Vol. 86Seismic Impedance Inversion Using Conditional Generative Adversarial NetworkIEEE Geoscience and Remote Sensing Letters, Vol. 19AVO Inversion Based on Transfer Learning and Low-Frequency ModelIEEE Geoscience and Remote Sensing Letters, Vol. 19Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks28 February 2021 | Remote Sensing, Vol. 13, No. 5Semi-Supervised Deep Learning Seismic Impedance Inversion Using Generative Adversarial Networks SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Jiameng Du, Junzhou Liu, Guangzhi Zhang, Lei Han, and Ning Li, (2019), "Pre-stack seismic inversion using SeisInv-ResNet," SEG Technical Program Expanded Abstracts : 2338-2342. https://doi.org/10.1190/segam2019-3215750.1 Plain-Language Summary Keywordsmachine learningprestackinversionazimuthHTIPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炙热怜寒发布了新的文献求助30
刚刚
小蘑菇应助picapica668采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
小蘑菇应助澡雪采纳,获得10
1秒前
3秒前
天天快乐应助道松先生采纳,获得10
3秒前
1057178963完成签到,获得积分10
4秒前
lijiaxin应助babayaga采纳,获得10
5秒前
ZZ发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
ED应助M1有光采纳,获得10
8秒前
8秒前
啊啊发布了新的文献求助10
8秒前
摸鱼不划水完成签到,获得积分10
9秒前
9秒前
汉堡包应助Yy杨优秀采纳,获得10
10秒前
10秒前
11秒前
核电站完成签到,获得积分10
12秒前
天线宝宝开派对了完成签到 ,获得积分10
12秒前
xww发布了新的文献求助10
12秒前
小何发布了新的文献求助10
13秒前
FunHigh发布了新的文献求助10
13秒前
14秒前
14秒前
童绾绾发布了新的文献求助10
17秒前
are完成签到,获得积分10
17秒前
17秒前
17秒前
19秒前
19秒前
Carrie完成签到,获得积分10
20秒前
敏感安柏发布了新的文献求助10
20秒前
20秒前
lijiaxin应助1177采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975871
求助须知:如何正确求助?哪些是违规求助? 3520207
关于积分的说明 11201502
捐赠科研通 3256611
什么是DOI,文献DOI怎么找? 1798403
邀请新用户注册赠送积分活动 877552
科研通“疑难数据库(出版商)”最低求助积分说明 806430