Pre-stack seismic inversion using SeisInv-ResNet

反演(地质) 地质学 地震学 石油勘探 叠前 方位角 计算机科学 石油 几何学 数学 构造学 古生物学
作者
Jiameng Du,Junzhou Liu,Guangzhi Zhang,Lei Han,Ning Li
标识
DOI:10.1190/segam2019-3215750.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Pre-stack seismic inversion using SeisInv-ResNetAuthors: Jiameng DuJunzhou LiuGuangzhi ZhangLei HanNing LiJiameng DuChina University of Petroleum (East China)Search for more papers by this author, Junzhou LiuSinopec Research InstituteSearch for more papers by this author, Guangzhi ZhangChina University of Petroleum (East China)Search for more papers by this author, Lei HanSinopec Research InstituteSearch for more papers by this author, and Ning LiChina Petroleum Logging CO.LTD.Search for more papers by this authorhttps://doi.org/10.1190/segam2019-3215750.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractDeep learning has a good performance in feature extraction and nonlinear fitting. In recent years, there has been more and more researchers applying deep learning to geophysics. In this work, we build a Resnet for pre-stack seismic inversion for azimuthal anisotropic medium, from which we obtain the P-wave impedance, S-wave impedance and rock physics parameters of fracture model. We use the SeisInv-ResNet to calculate the P-wave impedance, S-wave impedance and Schoenberg fracture rock physics parameters ΔN, ΔT. Comparing model value with inversion result, the work illustrates the feasibility of SeisInv-ResNet for prestack seismic inversion. The less the underground structure of work area varies, the less training data the network needs. Besides, we use data from oil field for SeisInv-ResNet inversion to train the network and get a good result. The application of ResNet has a profound meaning in seismic inversion.Presentation Date: Tuesday, September 17, 2019Session Start Time: 1:50 PMPresentation Time: 3:05 PMLocation: 221DPresentation Type: OralKeywords: machine learning, prestack, inversion, azimuth, HTIPermalink: https://doi.org/10.1190/segam2019-3215750.1FiguresReferencesRelatedDetailsCited byPrestack seismic inversion for elastic parameters using model-data-driven generative adversarial networksShuai Sun, Luanxiao Zhao, Huaizhen Chen, Zhiliang He, and Jianhua Geng20 February 2023 | GEOPHYSICS, Vol. 88, No. 2Multichannel seismic impedance inversion based on Attention U-Net27 February 2023 | Frontiers in Earth Science, Vol. 11Intelligent AVA Inversion Using a Convolution Neural Network Trained with Pseudo-Well Datasets30 January 2023 | Surveys in Geophysics, Vol. 86Seismic Impedance Inversion Using Conditional Generative Adversarial NetworkIEEE Geoscience and Remote Sensing Letters, Vol. 19AVO Inversion Based on Transfer Learning and Low-Frequency ModelIEEE Geoscience and Remote Sensing Letters, Vol. 19Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks28 February 2021 | Remote Sensing, Vol. 13, No. 5Semi-Supervised Deep Learning Seismic Impedance Inversion Using Generative Adversarial Networks SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Jiameng Du, Junzhou Liu, Guangzhi Zhang, Lei Han, and Ning Li, (2019), "Pre-stack seismic inversion using SeisInv-ResNet," SEG Technical Program Expanded Abstracts : 2338-2342. https://doi.org/10.1190/segam2019-3215750.1 Plain-Language Summary Keywordsmachine learningprestackinversionazimuthHTIPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AVsecurity完成签到,获得积分10
1秒前
自信依瑶完成签到,获得积分10
1秒前
1秒前
1秒前
Rondab应助MAIDANG采纳,获得10
2秒前
Zer完成签到,获得积分10
3秒前
3秒前
LL完成签到,获得积分10
3秒前
可爱的函函应助HAO采纳,获得10
4秒前
kyt完成签到 ,获得积分10
4秒前
光撒盐完成签到,获得积分10
4秒前
4秒前
拼搏的白云完成签到,获得积分10
4秒前
Mimanchi发布了新的文献求助10
5秒前
5秒前
5秒前
眼睛大的松鼠完成签到 ,获得积分10
5秒前
stt完成签到 ,获得积分10
6秒前
6秒前
lu发布了新的文献求助10
6秒前
红丽阿妹完成签到,获得积分10
7秒前
研友_8yX0xZ完成签到,获得积分10
7秒前
科研通AI5应助安全平静采纳,获得20
8秒前
ZBH完成签到,获得积分10
8秒前
芒果布丁完成签到,获得积分10
9秒前
allenspike完成签到,获得积分10
9秒前
9秒前
7890733发布了新的文献求助10
10秒前
ZZ发布了新的文献求助10
10秒前
烫头仙子完成签到,获得积分10
10秒前
兰兰发布了新的文献求助10
10秒前
和谐成协完成签到,获得积分10
10秒前
张雨兴完成签到,获得积分10
11秒前
嘻嘻哈哈完成签到,获得积分10
11秒前
新一完成签到 ,获得积分10
11秒前
筑城院完成签到,获得积分10
11秒前
Stefano完成签到,获得积分10
11秒前
芝士发布了新的文献求助10
12秒前
12秒前
djiwisksk66发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968771
求助须知:如何正确求助?哪些是违规求助? 3513646
关于积分的说明 11169065
捐赠科研通 3249011
什么是DOI,文献DOI怎么找? 1794589
邀请新用户注册赠送积分活动 875236
科研通“疑难数据库(出版商)”最低求助积分说明 804740