Pre-stack seismic inversion using SeisInv-ResNet

反演(地质) 地质学 地震学 石油勘探 叠前 方位角 计算机科学 石油 几何学 数学 构造学 古生物学
作者
Jiameng Du,Junzhou Liu,Guangzhi Zhang,Lei Han,Ning Li
标识
DOI:10.1190/segam2019-3215750.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Pre-stack seismic inversion using SeisInv-ResNetAuthors: Jiameng DuJunzhou LiuGuangzhi ZhangLei HanNing LiJiameng DuChina University of Petroleum (East China)Search for more papers by this author, Junzhou LiuSinopec Research InstituteSearch for more papers by this author, Guangzhi ZhangChina University of Petroleum (East China)Search for more papers by this author, Lei HanSinopec Research InstituteSearch for more papers by this author, and Ning LiChina Petroleum Logging CO.LTD.Search for more papers by this authorhttps://doi.org/10.1190/segam2019-3215750.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractDeep learning has a good performance in feature extraction and nonlinear fitting. In recent years, there has been more and more researchers applying deep learning to geophysics. In this work, we build a Resnet for pre-stack seismic inversion for azimuthal anisotropic medium, from which we obtain the P-wave impedance, S-wave impedance and rock physics parameters of fracture model. We use the SeisInv-ResNet to calculate the P-wave impedance, S-wave impedance and Schoenberg fracture rock physics parameters ΔN, ΔT. Comparing model value with inversion result, the work illustrates the feasibility of SeisInv-ResNet for prestack seismic inversion. The less the underground structure of work area varies, the less training data the network needs. Besides, we use data from oil field for SeisInv-ResNet inversion to train the network and get a good result. The application of ResNet has a profound meaning in seismic inversion.Presentation Date: Tuesday, September 17, 2019Session Start Time: 1:50 PMPresentation Time: 3:05 PMLocation: 221DPresentation Type: OralKeywords: machine learning, prestack, inversion, azimuth, HTIPermalink: https://doi.org/10.1190/segam2019-3215750.1FiguresReferencesRelatedDetailsCited byPrestack seismic inversion for elastic parameters using model-data-driven generative adversarial networksShuai Sun, Luanxiao Zhao, Huaizhen Chen, Zhiliang He, and Jianhua Geng20 February 2023 | GEOPHYSICS, Vol. 88, No. 2Multichannel seismic impedance inversion based on Attention U-Net27 February 2023 | Frontiers in Earth Science, Vol. 11Intelligent AVA Inversion Using a Convolution Neural Network Trained with Pseudo-Well Datasets30 January 2023 | Surveys in Geophysics, Vol. 86Seismic Impedance Inversion Using Conditional Generative Adversarial NetworkIEEE Geoscience and Remote Sensing Letters, Vol. 19AVO Inversion Based on Transfer Learning and Low-Frequency ModelIEEE Geoscience and Remote Sensing Letters, Vol. 19Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks28 February 2021 | Remote Sensing, Vol. 13, No. 5Semi-Supervised Deep Learning Seismic Impedance Inversion Using Generative Adversarial Networks SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Jiameng Du, Junzhou Liu, Guangzhi Zhang, Lei Han, and Ning Li, (2019), "Pre-stack seismic inversion using SeisInv-ResNet," SEG Technical Program Expanded Abstracts : 2338-2342. https://doi.org/10.1190/segam2019-3215750.1 Plain-Language Summary Keywordsmachine learningprestackinversionazimuthHTIPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xwq完成签到,获得积分20
3秒前
zz发布了新的文献求助10
3秒前
smy完成签到,获得积分10
3秒前
酷波er应助静待花开采纳,获得10
5秒前
善学以致用应助遇安采纳,获得10
5秒前
佛系养生发布了新的文献求助30
5秒前
受伤翠容发布了新的文献求助10
5秒前
6秒前
林谷雨完成签到 ,获得积分10
7秒前
淡淡以松完成签到,获得积分10
8秒前
9秒前
ashley完成签到,获得积分10
10秒前
11111发布了新的文献求助10
10秒前
11秒前
12秒前
yyy完成签到,获得积分10
12秒前
T1206182639完成签到,获得积分10
13秒前
xwq发布了新的文献求助30
14秒前
飘逸慕梅发布了新的文献求助10
14秒前
共享精神应助sxk采纳,获得10
16秒前
16秒前
17秒前
T1206182639发布了新的文献求助10
17秒前
罗亚亚完成签到,获得积分10
17秒前
YEeeeee完成签到 ,获得积分10
17秒前
17秒前
受伤翠容完成签到,获得积分10
19秒前
恒星发布了新的文献求助10
19秒前
WENBO完成签到,获得积分10
20秒前
21秒前
情怀应助优雅的怀莲采纳,获得10
21秒前
21秒前
yayyya发布了新的文献求助10
21秒前
无忧应助半圆亻采纳,获得10
21秒前
奋斗的元珊完成签到,获得积分10
21秒前
HY完成签到,获得积分10
22秒前
22秒前
WENBO发布了新的文献求助20
23秒前
海棠发布了新的文献求助30
24秒前
26秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071772
求助须知:如何正确求助?哪些是违规求助? 2725690
关于积分的说明 7490802
捐赠科研通 2373068
什么是DOI,文献DOI怎么找? 1258410
科研通“疑难数据库(出版商)”最低求助积分说明 610277
版权声明 596938