Pre-stack seismic inversion using SeisInv-ResNet

反演(地质) 地质学 地震学 石油勘探 叠前 方位角 计算机科学 石油 几何学 数学 构造学 古生物学
作者
Jiameng Du,Junzhou Liu,Guangzhi Zhang,Lei Han,Ning Li
标识
DOI:10.1190/segam2019-3215750.1
摘要

PreviousNext No AccessSEG Technical Program Expanded Abstracts 2019Pre-stack seismic inversion using SeisInv-ResNetAuthors: Jiameng DuJunzhou LiuGuangzhi ZhangLei HanNing LiJiameng DuChina University of Petroleum (East China)Search for more papers by this author, Junzhou LiuSinopec Research InstituteSearch for more papers by this author, Guangzhi ZhangChina University of Petroleum (East China)Search for more papers by this author, Lei HanSinopec Research InstituteSearch for more papers by this author, and Ning LiChina Petroleum Logging CO.LTD.Search for more papers by this authorhttps://doi.org/10.1190/segam2019-3215750.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractDeep learning has a good performance in feature extraction and nonlinear fitting. In recent years, there has been more and more researchers applying deep learning to geophysics. In this work, we build a Resnet for pre-stack seismic inversion for azimuthal anisotropic medium, from which we obtain the P-wave impedance, S-wave impedance and rock physics parameters of fracture model. We use the SeisInv-ResNet to calculate the P-wave impedance, S-wave impedance and Schoenberg fracture rock physics parameters ΔN, ΔT. Comparing model value with inversion result, the work illustrates the feasibility of SeisInv-ResNet for prestack seismic inversion. The less the underground structure of work area varies, the less training data the network needs. Besides, we use data from oil field for SeisInv-ResNet inversion to train the network and get a good result. The application of ResNet has a profound meaning in seismic inversion.Presentation Date: Tuesday, September 17, 2019Session Start Time: 1:50 PMPresentation Time: 3:05 PMLocation: 221DPresentation Type: OralKeywords: machine learning, prestack, inversion, azimuth, HTIPermalink: https://doi.org/10.1190/segam2019-3215750.1FiguresReferencesRelatedDetailsCited byPrestack seismic inversion for elastic parameters using model-data-driven generative adversarial networksShuai Sun, Luanxiao Zhao, Huaizhen Chen, Zhiliang He, and Jianhua Geng20 February 2023 | GEOPHYSICS, Vol. 88, No. 2Multichannel seismic impedance inversion based on Attention U-Net27 February 2023 | Frontiers in Earth Science, Vol. 11Intelligent AVA Inversion Using a Convolution Neural Network Trained with Pseudo-Well Datasets30 January 2023 | Surveys in Geophysics, Vol. 86Seismic Impedance Inversion Using Conditional Generative Adversarial NetworkIEEE Geoscience and Remote Sensing Letters, Vol. 19AVO Inversion Based on Transfer Learning and Low-Frequency ModelIEEE Geoscience and Remote Sensing Letters, Vol. 19Semi-Supervised Learning for Seismic Impedance Inversion Using Generative Adversarial Networks28 February 2021 | Remote Sensing, Vol. 13, No. 5Semi-Supervised Deep Learning Seismic Impedance Inversion Using Generative Adversarial Networks SEG Technical Program Expanded Abstracts 2019ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2019 Pages: 5407 publication data© 2019 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished Online: 10 Aug 2019 CITATION INFORMATION Jiameng Du, Junzhou Liu, Guangzhi Zhang, Lei Han, and Ning Li, (2019), "Pre-stack seismic inversion using SeisInv-ResNet," SEG Technical Program Expanded Abstracts : 2338-2342. https://doi.org/10.1190/segam2019-3215750.1 Plain-Language Summary Keywordsmachine learningprestackinversionazimuthHTIPDF DownloadLoading ...
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桑葚啊发布了新的文献求助10
刚刚
2秒前
2秒前
3秒前
5秒前
5秒前
5秒前
脑洞疼应助麟钰采纳,获得10
6秒前
YifanWang应助jessie采纳,获得30
6秒前
科研通AI5应助xiaodong采纳,获得10
6秒前
7秒前
高贵季节发布了新的文献求助10
11秒前
桑葚啊完成签到,获得积分10
11秒前
sue发布了新的文献求助10
12秒前
13秒前
迟大猫应助谭文采纳,获得20
16秒前
17秒前
ymhasslby发布了新的文献求助10
18秒前
zhanzhanzhan完成签到,获得积分20
19秒前
as112358完成签到 ,获得积分10
22秒前
Airy完成签到,获得积分10
22秒前
22秒前
23秒前
xiaodong发布了新的文献求助10
24秒前
wws完成签到 ,获得积分10
25秒前
小白完成签到,获得积分10
25秒前
26秒前
Dr.Who发布了新的文献求助10
28秒前
28秒前
Akim应助噜啦啦啦采纳,获得10
28秒前
zz完成签到 ,获得积分10
29秒前
jia完成签到,获得积分20
29秒前
朱一龙完成签到,获得积分10
30秒前
30秒前
31秒前
陈xt发布了新的文献求助30
31秒前
kkkkk发布了新的文献求助600
33秒前
龙玄泽应助强健的电话采纳,获得10
33秒前
34秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554070
求助须知:如何正确求助?哪些是违规求助? 3129835
关于积分的说明 9384354
捐赠科研通 2828932
什么是DOI,文献DOI怎么找? 1555328
邀请新用户注册赠送积分活动 725969
科研通“疑难数据库(出版商)”最低求助积分说明 715352