Interfacial design for lithium–sulfur batteries: From liquid to solid

电解质 分离器(采油) 材料科学 阳极 锂(药物) 阴极 快离子导体 电化学 化学工程 储能 聚合物 纳米技术 复合材料 电极 化学 电气工程 工程类 功率(物理) 物理 量子力学 医学 物理化学 内分泌学 热力学
作者
Min Yan,Wenpeng Wang,Ya‐Xia Yin,Li‐Jun Wan,Yu‐Guo Guo
出处
期刊:EnergyChem [Elsevier]
卷期号:1 (1): 100002-100002 被引量:127
标识
DOI:10.1016/j.enchem.2019.100002
摘要

Li–S batteries, offering high theoretical energy density of 2600 Wh kg−1, low cost and nontoxicity, are considered as a fascinating next-generation electric energy storage devices. However, the dissolution of the lithium polysulfides (LiPSs), shuttle effect and safety issues of Li anode notoriously pose great challenges for the commercialization of Li–S batteries. These problems derive from the interfacial issues among cathodes, separators, electrolytes and anodes, which in turn can be resolved by rational interface tailoring. This review mainly focuses on these interfacial issues in Li–S batteries with traditional liquid electrolytes and the latest research trend including gel polymer electrolytes, solid polymer electrolytes, solid inorganic electrolytes and hybrid electrolytes. In the liquid electrolyte systems, sulfur cathodes can effectively avoid severe shuttle effects and maintain stable cycling with the interfacial regulations of coatings, freestanding interlayers and separator modifications, while Li anode can be modified by protective layers, functional additives, three-dimensional current collectors and Li alloys. In quasi-solid systems (gel polymer electrolytes and hybrid electrolytes), rational designs are applied considering the utility of active materials, restraining LiPSs and suppressing Li dendrites. In all solid-state electrolyte systems (solid polymer electrolytes and solid inorganic electrolytes), the emphasis is to enhance the ionic conductivities and reduce the interfacial resistances. Mechanisms underlying these interfacial issues and corresponding electrochemical performances are discussed. Recent developments on the interfacial designs of Li–S batteries are summarized and highlighted. Based on the most critical factors of the interfaces proposed, prospectives are presented to pave the avenue for the designs of Li–S batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
生动大白菜真实的钥匙完成签到 ,获得积分10
刚刚
漂亮忆南发布了新的文献求助10
1秒前
xupeng发布了新的文献求助10
1秒前
1秒前
Qin发布了新的文献求助20
2秒前
qqqq发布了新的文献求助10
2秒前
2秒前
毕业就集采的苦命人完成签到 ,获得积分10
3秒前
浅蓝完成签到 ,获得积分10
4秒前
4秒前
5秒前
kaoru发布了新的文献求助10
5秒前
霸王花完成签到,获得积分10
6秒前
完美世界应助小王同志采纳,获得10
6秒前
小二郎应助xupeng采纳,获得10
6秒前
冷静的谷云完成签到,获得积分20
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
文献狗完成签到,获得积分10
6秒前
Small-violet发布了新的文献求助10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
7秒前
7秒前
7秒前
所所应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
情怀应助魔幻的妖丽采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
eric888应助科研通管家采纳,获得30
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524179
求助须知:如何正确求助?哪些是违规求助? 4614787
关于积分的说明 14544532
捐赠科研通 4552587
什么是DOI,文献DOI怎么找? 2494902
邀请新用户注册赠送积分活动 1475610
关于科研通互助平台的介绍 1447321