Adaptive multi-subswarm optimisation for feature selection on high-dimensional classification

特征选择 计算机科学 维数之咒 人工智能 粒子群优化 冗余(工程) 特征(语言学) 机器学习 降维 最小冗余特征选择 数据挖掘 高维数据聚类 进化计算 模式识别(心理学) 特征向量 人口 聚类分析 操作系统 哲学 社会学 人口学 语言学
作者
Binh Tran,Bing Xue,Mengjie Zhang
标识
DOI:10.1145/3321707.3321713
摘要

Feature space is an important factor influencing the performance of any machine learning algorithm including classification methods. Feature selection aims to remove irrelevant and redundant features that may negatively affect the learning process especially on high-dimensional data, which usually suffers from the curse of dimensionality. Feature ranking is one of the most scalable feature selection approaches to high-dimensional problems, but most of them fail to automatically determine the number of selected features as well as detect redundancy between features. Particle swarm optimisation (PSO) is a population-based algorithm which has shown to be effective in addressing these limitations. However, its performance on high-dimensional data is still limited due to the large search space and high computation cost. This study proposes the first adaptive multi-swarm optimisation (AMSO) method for feature selection that can automatically select a feature subset of high-dimensional data more effectively and efficiently than the compared methods. The subswarms are automatically and dynamically changed based on their performance during the evolutionary process. Experiments on ten high-dimensional datasets of varying difficulties have shown that AMSO is more effective and more efficient than the compared PSO-based and traditional feature selection methods in most cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李喵喵完成签到,获得积分20
1秒前
1秒前
Ada完成签到,获得积分10
1秒前
彭于彦祖应助就这采纳,获得80
1秒前
6666666666完成签到,获得积分10
1秒前
希望天下0贩的0应助ww采纳,获得10
1秒前
taotao完成签到,获得积分20
2秒前
sky完成签到,获得积分10
2秒前
冬雨清晨完成签到,获得积分20
2秒前
zws发布了新的文献求助10
2秒前
onia完成签到,获得积分10
2秒前
lalla发布了新的文献求助10
2秒前
vv发布了新的文献求助10
2秒前
落枫完成签到,获得积分10
2秒前
2秒前
orixero应助自觉的涵易采纳,获得10
3秒前
3秒前
3秒前
weijiang发布了新的文献求助10
4秒前
张瑜发布了新的文献求助10
4秒前
xuan发布了新的文献求助10
4秒前
4秒前
maxin完成签到,获得积分10
4秒前
顾矜应助CartGo采纳,获得10
4秒前
6666666666发布了新的文献求助10
5秒前
司马问兰完成签到,获得积分10
5秒前
5秒前
科研牛马完成签到,获得积分10
6秒前
6秒前
穆行恶完成签到,获得积分10
6秒前
orixero应助onia采纳,获得10
6秒前
7秒前
传奇3应助曲阿杰采纳,获得10
7秒前
allezallez完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
沧海横流完成签到,获得积分10
7秒前
8秒前
popvich应助东晓采纳,获得10
8秒前
NexusExplorer应助河清海晏采纳,获得10
9秒前
乔舟完成签到 ,获得积分10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699543
求助须知:如何正确求助?哪些是违规求助? 5131434
关于积分的说明 15226342
捐赠科研通 4854543
什么是DOI,文献DOI怎么找? 2604759
邀请新用户注册赠送积分活动 1556119
关于科研通互助平台的介绍 1514388