Adaptive multi-subswarm optimisation for feature selection on high-dimensional classification

特征选择 计算机科学 维数之咒 人工智能 粒子群优化 冗余(工程) 特征(语言学) 机器学习 降维 最小冗余特征选择 数据挖掘 高维数据聚类 进化计算 模式识别(心理学) 特征向量 人口 聚类分析 操作系统 哲学 社会学 人口学 语言学
作者
Binh Tran,Bing Xue,Mengjie Zhang
标识
DOI:10.1145/3321707.3321713
摘要

Feature space is an important factor influencing the performance of any machine learning algorithm including classification methods. Feature selection aims to remove irrelevant and redundant features that may negatively affect the learning process especially on high-dimensional data, which usually suffers from the curse of dimensionality. Feature ranking is one of the most scalable feature selection approaches to high-dimensional problems, but most of them fail to automatically determine the number of selected features as well as detect redundancy between features. Particle swarm optimisation (PSO) is a population-based algorithm which has shown to be effective in addressing these limitations. However, its performance on high-dimensional data is still limited due to the large search space and high computation cost. This study proposes the first adaptive multi-swarm optimisation (AMSO) method for feature selection that can automatically select a feature subset of high-dimensional data more effectively and efficiently than the compared methods. The subswarms are automatically and dynamically changed based on their performance during the evolutionary process. Experiments on ten high-dimensional datasets of varying difficulties have shown that AMSO is more effective and more efficient than the compared PSO-based and traditional feature selection methods in most cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助LJR采纳,获得10
刚刚
刚刚
1秒前
紧张的世德完成签到,获得积分10
1秒前
研友_ZrlaXL发布了新的文献求助10
1秒前
无花果应助化学兔八哥采纳,获得10
2秒前
余柳发布了新的文献求助10
2秒前
2秒前
黑森林完成签到,获得积分10
2秒前
CodeCraft应助今晚打老虎采纳,获得30
2秒前
shine完成签到,获得积分10
3秒前
犹豫的初丹完成签到,获得积分10
3秒前
3秒前
3秒前
我是老大应助zhihui采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
momosijia发布了新的文献求助10
6秒前
6秒前
自信晟睿发布了新的文献求助10
6秒前
平淡雪枫完成签到 ,获得积分10
6秒前
LS31发布了新的文献求助20
7秒前
Tingyu完成签到,获得积分10
7秒前
小欣发布了新的文献求助10
7秒前
LewisAcid举报量子星尘求助涉嫌违规
8秒前
8秒前
HLL发布了新的文献求助10
8秒前
Ethanyoyo0917完成签到,获得积分10
9秒前
9秒前
大气怜烟发布了新的文献求助10
9秒前
无极微光应助唯昭采纳,获得20
9秒前
9秒前
kong溪1002发布了新的文献求助10
9秒前
研友_ZrlaXL完成签到,获得积分10
10秒前
在水一方应助修狗儿采纳,获得10
10秒前
华仔应助双儿采纳,获得10
10秒前
李运发布了新的文献求助10
10秒前
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066