Adaptive multi-subswarm optimisation for feature selection on high-dimensional classification

特征选择 计算机科学 维数之咒 人工智能 粒子群优化 冗余(工程) 特征(语言学) 机器学习 降维 最小冗余特征选择 数据挖掘 高维数据聚类 进化计算 模式识别(心理学) 特征向量 人口 聚类分析 操作系统 哲学 社会学 人口学 语言学
作者
Binh Tran,Bing Xue,Mengjie Zhang
标识
DOI:10.1145/3321707.3321713
摘要

Feature space is an important factor influencing the performance of any machine learning algorithm including classification methods. Feature selection aims to remove irrelevant and redundant features that may negatively affect the learning process especially on high-dimensional data, which usually suffers from the curse of dimensionality. Feature ranking is one of the most scalable feature selection approaches to high-dimensional problems, but most of them fail to automatically determine the number of selected features as well as detect redundancy between features. Particle swarm optimisation (PSO) is a population-based algorithm which has shown to be effective in addressing these limitations. However, its performance on high-dimensional data is still limited due to the large search space and high computation cost. This study proposes the first adaptive multi-swarm optimisation (AMSO) method for feature selection that can automatically select a feature subset of high-dimensional data more effectively and efficiently than the compared methods. The subswarms are automatically and dynamically changed based on their performance during the evolutionary process. Experiments on ten high-dimensional datasets of varying difficulties have shown that AMSO is more effective and more efficient than the compared PSO-based and traditional feature selection methods in most cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
Lucas应助如意道消采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
刚刚
pluto应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
fhbc发布了新的文献求助10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
晚晚完成签到 ,获得积分10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得30
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
善学以致用应助苦哈哈采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
美好乐松应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
小二郎应助畅快访蕊采纳,获得10
2秒前
乐乐应助我每天都好酷采纳,获得10
3秒前
冰冰完成签到,获得积分20
3秒前
Aprial发布了新的文献求助10
3秒前
4秒前
饼大王发布了新的文献求助10
4秒前
可爱的函函应助666采纳,获得10
4秒前
5秒前
陈航完成签到,获得积分10
6秒前
赘婿应助好了采纳,获得10
6秒前
顺顺完成签到 ,获得积分10
6秒前
苏白发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135752
求助须知:如何正确求助?哪些是违规求助? 2786595
关于积分的说明 7778521
捐赠科研通 2442742
什么是DOI,文献DOI怎么找? 1298676
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600866