TIFIM: A Two-stage Iterative Framework for Influence Maximization in Social Networks

最大化 计算 数学优化 计算机科学 启发式 贪婪算法 节点(物理) 迭代法 算法 数学 结构工程 工程类
作者
Qiang He,Xingwei Wang,Zhencheng Lei,Min Huang,Yuliang Cai,Lianbo Ma
出处
期刊:Applied Mathematics and Computation [Elsevier]
卷期号:354: 338-352 被引量:94
标识
DOI:10.1016/j.amc.2019.02.056
摘要

Influence Maximization is an important problem in social networks, and its main goal is to select some most influential initial nodes (i.e., seed nodes) to obtain the maximal influence spread. The existing studies primarily concentrate on the corresponding methods for influence maximization, including greedy algorithms, heuristic algorithms and their extensions to determine the most influential nodes. However, there is little work to ensure efficiency and accuracy of the proposed schemes at the same time. In this paper, a Two-stage Iterative Framework for the Influence Maximization in social networks, (i.e., TIFIM) is proposed. In order to exclude less influential nodes and decrease the computation complexity of TIFIM, in the first stage, an iterative framework in descending order is proposed to select the candidate nodes. In particular, based on the results of the last iteration and the two-hop measure, the First-Last Allocating Strategy (FLAS) is presented to compute the spread benefit of each node. We prove that TIFIM converges to a stable order within the finite iterations. In the second stage, we define the apical dominance to calculate the overlapping phenomenon of spread benefit among nodes and further propose Removal of the Apical Dominance (RAD) to determine seed nodes from the candidate nodes. Moreover, we also prove that the influence spread of TIFIM according to RAD converges to a specific value within finite computations. Finally, simulation results show that the proposed scheme has superior influence spread and running time than other existing ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GG完成签到,获得积分10
1秒前
1秒前
3秒前
喜滋滋发布了新的文献求助10
4秒前
5秒前
桃桃完成签到,获得积分20
5秒前
苏书白应助123采纳,获得10
5秒前
站我完成签到,获得积分10
5秒前
桐桐应助高兴的土豆采纳,获得10
5秒前
cccui发布了新的文献求助10
5秒前
qian倩发布了新的文献求助10
6秒前
小田心发布了新的文献求助10
6秒前
puke完成签到,获得积分10
9秒前
Hello应助flowey采纳,获得10
9秒前
Hello应助11采纳,获得10
10秒前
Natasha发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
李李完成签到,获得积分10
12秒前
14秒前
15秒前
领导范儿应助一念初见采纳,获得30
16秒前
puke发布了新的文献求助10
16秒前
16秒前
天天快乐应助空曲采纳,获得10
16秒前
17秒前
17秒前
17秒前
CONFIDENCE完成签到,获得积分10
17秒前
18秒前
18秒前
soar发布了新的文献求助10
20秒前
cccui发布了新的文献求助10
20秒前
xyy发布了新的文献求助10
22秒前
23秒前
23秒前
Lh关注了科研通微信公众号
23秒前
张才豪发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150027
求助须知:如何正确求助?哪些是违规求助? 2801108
关于积分的说明 7843272
捐赠科研通 2458621
什么是DOI,文献DOI怎么找? 1308555
科研通“疑难数据库(出版商)”最低求助积分说明 628553
版权声明 601721