Crumple nanostructuring of atomically thin 2D materials for flexible optoelectronic devices and plasmonic metamaterials

材料科学 石墨烯 可重构性 等离子体子 光电子学 超材料 光电探测器 纳米技术 计算机科学 电信
作者
Pilgyu Kang,Michael Cai Wang,Peter M. Knapp,Kyoung-Ho Kim,Hong Gyu Park,SungWoo Nam
标识
DOI:10.1117/12.2510971
摘要

Atomically-thin two-dimensional (2D) materials including graphene and transition metal dichalcogenide (TMD) atomic layers (e.g. Molybdenum disulfide, MoS2) are attractive materials for optoelectronic and plasmonic applications and devices due to their exceptional flexural strength led by atomic thickness, broadband optical absorption, and high carrier mobility. Here, we show that crumple nanostructuring of 2D materials allows the enhancement of the outstanding material properties and furthermore enables new, multi-functionalities in mechanical, optoelectronic and plasmonic properties of atomically-thin 2D materials. Crumple nanostructuring of atomically thin materials, graphene and MoS2 atomic layers are used to achieve flexible/stretchable, strain-tunable photodetector devices and plasmonic metamaterials with mechanical reconfigurability. Crumpling of graphene enhances optical absorption by more than an order of magnitude (~12.5 times), enabling enhancement of photoresponsivity by 370% to flat graphene photodetectors and ultrahigh stretchability up to 200%. Furthermore, we present a novel approach to achieve mechanically reconfigurable, strong plasmonic resonances based on crumple-nanostructured graphene. Mechanical reconfiguration of crumple nanostructured graphene allows wide-range tunability of plasmonic resonances from mid- to near-infrared wavelengths. The mechanical reconfigurability can be combined with conventional electrostatic tuning. Our approach of crumple nanostructuring has potential to be applicable for other various 2D materials to achieve strain engineering and mechanical tunability of materials properties. The new functionalities in mechanical, optoelectronic, plasmonic properties created by crumple nanostructuring have potential for emerging flexible electronics and optoelectronics as well as for biosensing technologies and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Nwafu完成签到,获得积分10
1秒前
Ava应助多肉葡萄采纳,获得10
3秒前
调皮的曼安完成签到,获得积分10
3秒前
菲比完成签到 ,获得积分10
3秒前
噢噢发布了新的文献求助10
4秒前
111发布了新的文献求助10
5秒前
哦哦哦发布了新的文献求助10
6秒前
小碗熊发布了新的文献求助20
6秒前
鲤鱼月饼完成签到 ,获得积分10
7秒前
落寞擎发布了新的文献求助10
7秒前
噢噢完成签到,获得积分10
8秒前
xy完成签到,获得积分20
9秒前
9秒前
11秒前
11秒前
11秒前
打打应助叶公子采纳,获得10
12秒前
小xun应助山水之乐采纳,获得10
13秒前
Jackpu完成签到,获得积分10
13秒前
13秒前
SCI完成签到,获得积分10
14秒前
科研通AI5应助缓慢寄翠采纳,获得30
14秒前
Hello应助奋斗夏旋采纳,获得10
14秒前
14秒前
研友_VZG7GZ应助Yuuki采纳,获得10
14秒前
HarrisonChan发布了新的文献求助10
14秒前
15秒前
17秒前
jing发布了新的文献求助10
17秒前
18秒前
科研通AI5应助momo采纳,获得10
18秒前
18秒前
CL发布了新的文献求助10
18秒前
lingkai发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
共享精神应助科研通管家采纳,获得10
20秒前
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5158188
求助须知:如何正确求助?哪些是违规求助? 4353142
关于积分的说明 13553986
捐赠科研通 4196565
什么是DOI,文献DOI怎么找? 2301684
邀请新用户注册赠送积分活动 1301442
关于科研通互助平台的介绍 1246649