Crumple nanostructuring of atomically thin 2D materials for flexible optoelectronic devices and plasmonic metamaterials

材料科学 石墨烯 可重构性 等离子体子 光电子学 超材料 光电探测器 纳米技术 计算机科学 电信
作者
Pilgyu Kang,Michael Cai Wang,Peter M. Knapp,Kyoung-Ho Kim,Hong Gyu Park,SungWoo Nam
标识
DOI:10.1117/12.2510971
摘要

Atomically-thin two-dimensional (2D) materials including graphene and transition metal dichalcogenide (TMD) atomic layers (e.g. Molybdenum disulfide, MoS2) are attractive materials for optoelectronic and plasmonic applications and devices due to their exceptional flexural strength led by atomic thickness, broadband optical absorption, and high carrier mobility. Here, we show that crumple nanostructuring of 2D materials allows the enhancement of the outstanding material properties and furthermore enables new, multi-functionalities in mechanical, optoelectronic and plasmonic properties of atomically-thin 2D materials. Crumple nanostructuring of atomically thin materials, graphene and MoS2 atomic layers are used to achieve flexible/stretchable, strain-tunable photodetector devices and plasmonic metamaterials with mechanical reconfigurability. Crumpling of graphene enhances optical absorption by more than an order of magnitude (~12.5 times), enabling enhancement of photoresponsivity by 370% to flat graphene photodetectors and ultrahigh stretchability up to 200%. Furthermore, we present a novel approach to achieve mechanically reconfigurable, strong plasmonic resonances based on crumple-nanostructured graphene. Mechanical reconfiguration of crumple nanostructured graphene allows wide-range tunability of plasmonic resonances from mid- to near-infrared wavelengths. The mechanical reconfigurability can be combined with conventional electrostatic tuning. Our approach of crumple nanostructuring has potential to be applicable for other various 2D materials to achieve strain engineering and mechanical tunability of materials properties. The new functionalities in mechanical, optoelectronic, plasmonic properties created by crumple nanostructuring have potential for emerging flexible electronics and optoelectronics as well as for biosensing technologies and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tim完成签到,获得积分10
刚刚
1秒前
tanx发布了新的文献求助10
1秒前
SciGPT应助海洋球采纳,获得10
1秒前
邱晓文完成签到 ,获得积分20
1秒前
1秒前
2秒前
LYH发布了新的文献求助10
2秒前
灿烂千阳完成签到,获得积分10
2秒前
快乐的素完成签到 ,获得积分10
2秒前
3秒前
viviji完成签到,获得积分10
3秒前
健壮道天应助bule采纳,获得10
3秒前
3秒前
真实的一鸣完成签到,获得积分10
3秒前
JJBOND完成签到,获得积分10
3秒前
4秒前
2620完成签到,获得积分10
4秒前
昏睡的慕青完成签到,获得积分10
4秒前
什么什么哇偶完成签到 ,获得积分10
4秒前
5秒前
5秒前
5秒前
HR112发布了新的文献求助10
5秒前
找不到文献的阿d完成签到,获得积分10
5秒前
赘婿应助可靠的灵珊采纳,获得10
5秒前
JamesPei应助benbengouj采纳,获得10
6秒前
奋斗朋友完成签到 ,获得积分10
6秒前
幻心完成签到,获得积分20
6秒前
dayaya完成签到,获得积分10
7秒前
香菜味钠片完成签到,获得积分10
8秒前
芒果发布了新的文献求助30
8秒前
Leonard发布了新的文献求助10
8秒前
linlinWang发布了新的文献求助10
8秒前
123完成签到,获得积分10
9秒前
9秒前
淡定的勒应助chenchen采纳,获得10
9秒前
忐忑的蛋糕完成签到,获得积分10
9秒前
9秒前
初小花完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439