Predicting the Risk of Weight Loss After Esophageal Cancer Surgery

医学 食管癌 减肥 接收机工作特性 食管切除术 队列 外科肿瘤学 癌症 外科 体质指数 队列研究 人口 内科学 肥胖 环境卫生
作者
Anna Schandl,Joonas H. Kauppila,Poorna Anandavadivelan,Asif Johar,Pernilla Lagergren
出处
期刊:Annals of Surgical Oncology [Springer Science+Business Media]
卷期号:26 (8): 2385-2391 被引量:27
标识
DOI:10.1245/s10434-019-07352-5
摘要

Malnutrition after esophageal cancer surgery is associated with reduced health-related qualify of life. Therefore, a prediction model identifying patients at risk for severe weight loss after surgery was developed.Data from a Swedish population-based cohort study, including 616 patients undergoing esophageal cancer surgery in 2001-2005, was used. Candidate predictors included risk factors available before and immediately after surgery. Severe weight loss was defined as ≥ 15% loss of body weight between the time of surgery and 6 months postoperatively. The prediction model was developed using multivariable models. The accuracy of the model was measured by the area under the receiver operating characteristics curve (AUC) with bootstrap validation. The model was externally validated in a hospital-based cohort of 91 surgically treated esophageal cancer patients in the United Kingdom in 2011-2016. Each predictor in the final model was assigned a corresponding risk score. The sum of risk scores was equivalent to an estimated probability for severe weight loss.Among the 351 patients with 6 months follow-up data, 125 (36%) suffered from severe postoperative weight loss. The final prediction model included body mass index at diagnosis, preoperative weight loss, and neoadjuvant therapy. The AUC for the model was 0.78 (95% CI 0.74-0.83). In the validation cohort, the AUC was 0.76. A clinical risk assessment guide was derived from the prediction model.This prediction model can preoperatively identify individuals with high risk of severe weight loss after esophageal cancer surgery. Intensive nutritional interventions for these patients are recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理夏槐完成签到,获得积分20
1秒前
crave发布了新的文献求助10
2秒前
明天过后完成签到,获得积分10
2秒前
skysleeper完成签到,获得积分10
3秒前
耍酷的梦桃完成签到,获得积分10
4秒前
龙在天涯完成签到,获得积分10
4秒前
6秒前
成就绮琴完成签到 ,获得积分10
7秒前
12366666完成签到,获得积分10
7秒前
阿弹完成签到,获得积分10
7秒前
shining完成签到,获得积分10
8秒前
过儿完成签到 ,获得积分10
8秒前
Silence完成签到,获得积分0
9秒前
livra1058完成签到,获得积分10
9秒前
简单的易云完成签到,获得积分10
10秒前
无味完成签到,获得积分10
12秒前
qiqi完成签到,获得积分10
13秒前
gnosis发布了新的文献求助30
14秒前
lllllllll完成签到,获得积分10
14秒前
笑傲江湖完成签到,获得积分10
14秒前
狠毒的小龙虾完成签到,获得积分10
14秒前
过昭关完成签到,获得积分10
15秒前
黑粉头头完成签到,获得积分10
15秒前
lxlcx完成签到,获得积分0
16秒前
zhuxd完成签到,获得积分10
16秒前
gy完成签到,获得积分20
16秒前
沉静的浩然完成签到 ,获得积分10
17秒前
李李李李李完成签到,获得积分10
17秒前
发呆的小号完成签到 ,获得积分10
18秒前
X先生完成签到 ,获得积分10
21秒前
Chloe完成签到,获得积分10
21秒前
冷艳的冬萱完成签到,获得积分10
21秒前
药药完成签到 ,获得积分10
22秒前
冬瓜鑫完成签到 ,获得积分10
24秒前
Qing完成签到 ,获得积分10
26秒前
赵田完成签到 ,获得积分10
30秒前
所所应助echo采纳,获得10
31秒前
郭帅完成签到,获得积分10
31秒前
小张同学完成签到 ,获得积分10
33秒前
加一点荒谬完成签到,获得积分10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220