Predicting the Risk of Weight Loss After Esophageal Cancer Surgery

医学 食管癌 减肥 接收机工作特性 食管切除术 队列 外科肿瘤学 癌症 外科 体质指数 队列研究 人口 内科学 肥胖 环境卫生
作者
Anna Schandl,Joonas H. Kauppila,Poorna Anandavadivelan,Asif Johar,Pernilla Lagergren
出处
期刊:Annals of Surgical Oncology [Springer Nature]
卷期号:26 (8): 2385-2391 被引量:27
标识
DOI:10.1245/s10434-019-07352-5
摘要

Malnutrition after esophageal cancer surgery is associated with reduced health-related qualify of life. Therefore, a prediction model identifying patients at risk for severe weight loss after surgery was developed.Data from a Swedish population-based cohort study, including 616 patients undergoing esophageal cancer surgery in 2001-2005, was used. Candidate predictors included risk factors available before and immediately after surgery. Severe weight loss was defined as ≥ 15% loss of body weight between the time of surgery and 6 months postoperatively. The prediction model was developed using multivariable models. The accuracy of the model was measured by the area under the receiver operating characteristics curve (AUC) with bootstrap validation. The model was externally validated in a hospital-based cohort of 91 surgically treated esophageal cancer patients in the United Kingdom in 2011-2016. Each predictor in the final model was assigned a corresponding risk score. The sum of risk scores was equivalent to an estimated probability for severe weight loss.Among the 351 patients with 6 months follow-up data, 125 (36%) suffered from severe postoperative weight loss. The final prediction model included body mass index at diagnosis, preoperative weight loss, and neoadjuvant therapy. The AUC for the model was 0.78 (95% CI 0.74-0.83). In the validation cohort, the AUC was 0.76. A clinical risk assessment guide was derived from the prediction model.This prediction model can preoperatively identify individuals with high risk of severe weight loss after esophageal cancer surgery. Intensive nutritional interventions for these patients are recommended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
刚刚
zzzzzz应助科研通管家采纳,获得20
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
sidegate应助科研通管家采纳,获得10
刚刚
prosperp应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
li完成签到,获得积分10
刚刚
刚刚
mlml完成签到,获得积分10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
Zn应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
Zn应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
jimmy发布了新的文献求助10
1秒前
华仔应助hhh采纳,获得10
2秒前
hug完成签到,获得积分10
2秒前
科研通AI5应助cxwong采纳,获得10
2秒前
2秒前
沉敛一生完成签到,获得积分10
2秒前
hhy发布了新的文献求助10
2秒前
starry发布了新的文献求助10
3秒前
Wxd0211发布了新的文献求助10
3秒前
章鱼完成签到,获得积分20
3秒前
3秒前
任医生完成签到,获得积分10
3秒前
4秒前
wyh完成签到,获得积分10
4秒前
lalala完成签到,获得积分10
5秒前
FCH2023完成签到,获得积分10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672