A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

人工智能 模式识别(心理学) 特征选择 判别式 尺度不变特征变换 无线电技术 计算机科学 稀疏逼近 特征(语言学) 特征提取 代表(政治) 机器学习 哲学 语言学 政治 政治学 法学
作者
Guoqing Wu,Zhifeng Shi,Yinsheng Chen,Yuanyuan Wang,Jinhua Yu,Xiaofei Lv,Liang Chen,Xue Ju,Zhongping Chen
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 250-261 被引量:23
标识
DOI:10.1002/mp.13288
摘要

Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyq发布了新的文献求助10
1秒前
失眠依珊完成签到,获得积分10
2秒前
2秒前
4秒前
5秒前
6秒前
哈哈哈完成签到,获得积分20
6秒前
好学生发布了新的文献求助10
7秒前
大头娃娃没下巴完成签到,获得积分10
9秒前
爱因斯坦发布了新的文献求助10
9秒前
平淡的寄风完成签到,获得积分0
10秒前
高兴白山完成签到,获得积分10
10秒前
研友_VZG7GZ应助哈哈哈采纳,获得10
11秒前
武雨寒发布了新的文献求助10
11秒前
budingman发布了新的文献求助30
12秒前
sht应助笑哦采纳,获得10
12秒前
kiki完成签到,获得积分10
13秒前
16秒前
17秒前
junyang发布了新的文献求助10
19秒前
20秒前
朝暮发布了新的文献求助10
21秒前
...完成签到 ,获得积分0
21秒前
好学生关注了科研通微信公众号
22秒前
陈艺鹏完成签到,获得积分10
23秒前
23秒前
传奇3应助糖糖糖采纳,获得10
25秒前
26秒前
CCCCCC发布了新的文献求助10
26秒前
哈哈哈发布了新的文献求助10
27秒前
LC发布了新的文献求助10
27秒前
共享精神应助芒小果采纳,获得10
28秒前
28秒前
Suttier发布了新的文献求助10
30秒前
HJJHJH发布了新的文献求助30
32秒前
yucj完成签到,获得积分10
33秒前
CCCCCC完成签到,获得积分20
33秒前
hx完成签到,获得积分10
33秒前
34秒前
NexusExplorer应助糖糖糖采纳,获得10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432