A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

人工智能 模式识别(心理学) 特征选择 判别式 尺度不变特征变换 无线电技术 计算机科学 稀疏逼近 特征(语言学) 特征提取 代表(政治) 机器学习 哲学 政治 语言学 法学 政治学
作者
Guoqing Wu,Zhifeng Shi,Yinsheng Chen,Yuanyuan Wang,Jinhua Yu,Xiaofei Lv,Liang Chen,Xue Ju,Zhongping Chen
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 250-261 被引量:23
标识
DOI:10.1002/mp.13288
摘要

Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助封尘逸动采纳,获得10
刚刚
情怀应助清爽凝阳采纳,获得10
刚刚
行行好吧完成签到 ,获得积分10
刚刚
刚刚
研友_VZG7GZ应助牛超采纳,获得10
刚刚
jy发布了新的文献求助10
1秒前
浑复天完成签到,获得积分10
1秒前
zxszxs应助七秒采纳,获得10
2秒前
怕黑的向南完成签到,获得积分10
2秒前
2秒前
糟糕的学姐完成签到,获得积分10
2秒前
2秒前
TJH完成签到,获得积分10
2秒前
烂漫宝贝完成签到,获得积分10
3秒前
丁凛完成签到,获得积分10
3秒前
3秒前
4秒前
qaz111222完成签到,获得积分10
4秒前
xxd发布了新的文献求助10
4秒前
潮湿梦发布了新的文献求助10
5秒前
jin发布了新的文献求助10
5秒前
cici发布了新的文献求助10
5秒前
ydxhh发布了新的文献求助10
5秒前
Maryjo完成签到,获得积分10
5秒前
血族白白发布了新的文献求助10
5秒前
kek发布了新的文献求助10
5秒前
Owen应助wuta采纳,获得10
5秒前
现代宝宝发布了新的文献求助10
6秒前
Zr发布了新的文献求助20
6秒前
在水一方应助面包人采纳,获得10
6秒前
一逗完成签到,获得积分10
6秒前
梅比乌斯博士救救我完成签到,获得积分10
6秒前
踏实季节发布了新的文献求助10
6秒前
豆皮儿发布了新的文献求助10
7秒前
7秒前
善良的盼易完成签到,获得积分10
7秒前
7秒前
这位同学不知道叫什么好完成签到,获得积分10
7秒前
7秒前
香蕉觅云应助hxy采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192815
求助须知:如何正确求助?哪些是违规求助? 4375670
关于积分的说明 13626094
捐赠科研通 4230144
什么是DOI,文献DOI怎么找? 2320319
邀请新用户注册赠送积分活动 1318661
关于科研通互助平台的介绍 1268974