A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

人工智能 模式识别(心理学) 特征选择 判别式 尺度不变特征变换 无线电技术 计算机科学 稀疏逼近 特征(语言学) 特征提取 代表(政治) 机器学习 哲学 政治 语言学 法学 政治学
作者
Guoqing Wu,Zhifeng Shi,Yinsheng Chen,Yuanyuan Wang,Jinhua Yu,Xiaofei Lv,Liang Chen,Xue Ju,Zhongping Chen
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 250-261 被引量:23
标识
DOI:10.1002/mp.13288
摘要

Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
大模型应助suyaaaaa采纳,获得10
5秒前
www完成签到,获得积分10
5秒前
JnifferJun完成签到,获得积分10
6秒前
sjc完成签到,获得积分20
8秒前
轩辕白竹完成签到,获得积分10
8秒前
8秒前
8秒前
狂野友梅完成签到,获得积分10
9秒前
领导范儿应助朴实水壶采纳,获得10
11秒前
明理可燕发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
JnifferJun发布了新的文献求助10
14秒前
阿尔法突袭完成签到,获得积分10
16秒前
16秒前
神勇乐安完成签到,获得积分10
17秒前
Xiaoxiannv完成签到,获得积分10
18秒前
希望天下0贩的0应助znhy采纳,获得10
19秒前
20秒前
笨笨山芙应助super采纳,获得20
21秒前
幽壑之潜蛟应助crack采纳,获得10
21秒前
ZhonghanWen发布了新的文献求助20
21秒前
22秒前
花薇Liv完成签到,获得积分10
23秒前
朴实水壶发布了新的文献求助10
24秒前
swjfly完成签到,获得积分20
25秒前
JamesPei应助左惋庭采纳,获得10
26秒前
27秒前
28秒前
大模型应助Yi采纳,获得10
28秒前
28秒前
toolate完成签到,获得积分10
29秒前
克莱完成签到 ,获得积分10
31秒前
31秒前
彭于晏应助paddi采纳,获得10
32秒前
情怀应助ad采纳,获得10
33秒前
DQY发布了新的文献求助10
33秒前
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510