已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

人工智能 模式识别(心理学) 特征选择 判别式 尺度不变特征变换 无线电技术 计算机科学 稀疏逼近 特征(语言学) 特征提取 代表(政治) 机器学习 哲学 政治 语言学 法学 政治学
作者
Guoqing Wu,Zhifeng Shi,Yinsheng Chen,Yuanyuan Wang,Jinhua Yu,Xiaofei Lv,Liang Chen,Xue Ju,Zhongping Chen
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 250-261 被引量:23
标识
DOI:10.1002/mp.13288
摘要

Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助桔子树采纳,获得10
刚刚
1秒前
Liuxinyiliu完成签到,获得积分10
3秒前
每天睡不醒完成签到 ,获得积分10
4秒前
7秒前
7秒前
En发布了新的文献求助10
7秒前
8秒前
Hello应助柳德焕采纳,获得10
9秒前
liao应助de采纳,获得10
10秒前
11秒前
快乐乐松发布了新的文献求助10
11秒前
13秒前
13秒前
852应助jeremypan采纳,获得30
15秒前
16秒前
Echo完成签到,获得积分10
17秒前
18秒前
精明向梦完成签到,获得积分10
18秒前
Yan完成签到,获得积分10
19秒前
20秒前
SciGPT应助Helio采纳,获得10
22秒前
老实德地关注了科研通微信公众号
22秒前
Ning完成签到,获得积分10
24秒前
万能图书馆应助幽默笑白采纳,获得10
25秒前
DOZ发布了新的文献求助10
27秒前
27秒前
假茂茂发布了新的文献求助10
28秒前
29秒前
浮游应助菜菜就爱玩采纳,获得10
30秒前
Jackey完成签到,获得积分10
31秒前
DOZ完成签到,获得积分10
32秒前
张海铭完成签到,获得积分10
34秒前
电气工程及其自动化学院完成签到,获得积分10
35秒前
xiao完成签到,获得积分20
35秒前
欣慰立轩发布了新的文献求助10
36秒前
科研狗发布了新的文献求助10
37秒前
瀚海的雄狮完成签到,获得积分10
38秒前
41秒前
42秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449335
求助须知:如何正确求助?哪些是违规求助? 4557480
关于积分的说明 14263727
捐赠科研通 4480534
什么是DOI,文献DOI怎么找? 2454469
邀请新用户注册赠送积分活动 1445212
关于科研通互助平台的介绍 1421016