A sparse representation‐based radiomics for outcome prediction of higher grade gliomas

人工智能 模式识别(心理学) 特征选择 判别式 尺度不变特征变换 无线电技术 计算机科学 稀疏逼近 特征(语言学) 特征提取 代表(政治) 机器学习 哲学 政治 语言学 法学 政治学
作者
Guoqing Wu,Zhifeng Shi,Yinsheng Chen,Yuanyuan Wang,Jinhua Yu,Xiaofei Lv,Liang Chen,Xue Ju,Zhongping Chen
出处
期刊:Medical Physics [Wiley]
卷期号:46 (1): 250-261 被引量:23
标识
DOI:10.1002/mp.13288
摘要

Accurately predicting outcome (i.e., overall survival (OS) time) for higher grade glioma (HGG) has great clinical value and would provide optimized guidelines for treatment planning. Radiomics focuses on revealing underlying pathophysiological information in biomedical images for disease analysis and demonstrates promising prognostic clinical performance. In this paper, we propose a novel sparse representation-based radiomics framework to predict if HGG patients would have long or short OS time.First, taking advantages of the scale invariant feature transform (SIFT) feature in image characterizing, we developed a sparse representation-based method to convert a local SIFT descriptor into a global tumor feature. Next, because preserving sample structure is beneficial for feature selection, we proposed a locality preserving projection and sparse representation-combined feature selection method to select more discriminative features for tumor classification. Finally, we employed a multifeature collaborative sparse representation classification to combine the information of multimodal images to classify OS time.Three experiments were performed on the two datasets provided by different institutions. Specifically, the proposed model was trained and independently tested on dataset 1 (135 subjects), on dataset 2 (86 subjects), and on the combination of dataset 1 and dataset 2, respectively. Experimental results demonstrated that the proposed method achieved encouraging prediction performance, exhibiting a testing accuracy of 93.33% on dataset 1 (one modality), 92.31% on dataset 2 (two modalities), and 87.93% on the combined dataset (one modality).The sparse representation theory provides reasonable solutions to feature extraction, feature selection, and classification for radiomics. This study provides a promising tool to enhance the prediction performance of HGG patient's outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
5秒前
ytli完成签到 ,获得积分10
5秒前
夏日随笔完成签到 ,获得积分10
5秒前
Zachary完成签到 ,获得积分10
5秒前
平凡完成签到,获得积分10
7秒前
wz完成签到,获得积分10
9秒前
WTTTTTFFFFFF发布了新的文献求助10
10秒前
研友_ZG4ml8完成签到 ,获得积分10
11秒前
tao完成签到 ,获得积分10
15秒前
jyy应助666采纳,获得10
16秒前
WTTTTTFFFFFF完成签到,获得积分10
19秒前
19秒前
张wx_100发布了新的文献求助10
26秒前
海阔天空完成签到,获得积分0
29秒前
何兴棠完成签到,获得积分10
29秒前
31秒前
扬帆起航完成签到 ,获得积分10
35秒前
研友_nPPzon完成签到,获得积分10
35秒前
37秒前
李浅墨完成签到 ,获得积分10
40秒前
keyan123发布了新的文献求助10
45秒前
卡卡光波完成签到,获得积分10
46秒前
千帆破浪完成签到 ,获得积分10
48秒前
sjx1116完成签到,获得积分10
49秒前
儒雅的如松完成签到 ,获得积分10
55秒前
Liang完成签到,获得积分10
55秒前
lynn完成签到 ,获得积分10
57秒前
yy发布了新的文献求助200
57秒前
petrichor应助科研通管家采纳,获得10
57秒前
petrichor应助科研通管家采纳,获得10
57秒前
petrichor应助科研通管家采纳,获得10
57秒前
CodeCraft应助科研通管家采纳,获得10
58秒前
petrichor应助科研通管家采纳,获得10
58秒前
MY完成签到 ,获得积分10
58秒前
凡事发生必有利于我完成签到,获得积分10
58秒前
像猫的狗完成签到 ,获得积分10
59秒前
keyan123完成签到,获得积分10
1分钟前
qyzhu完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566677
求助须知:如何正确求助?哪些是违规求助? 3139426
关于积分的说明 9431792
捐赠科研通 2840268
什么是DOI,文献DOI怎么找? 1560990
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717854